Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Editors: W.T.A. Harrison, J. Simpson and M. Weil

1-Cyclohexyl-2-(3-furyl)-1*H*-benzimidazole-5-carboxylic acid

Sergey Dibrov, Sanjay Dutta and Thomas Hermann

Acta Cryst. (2009). E65, o2136

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. In 2007, the journal published over 5000 structures. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Cyclohexyl-2-(3-furyl)-1*H*benzimidazole-5-carboxylic acid

Sergey Dibrov, Sanjay Dutta and Thomas Hermann*

University of California, San Diego, 9500 Gilman Drive # 0358, La Jolla, CA 92093-0358, USA Correspondence e-mail: tch@ucsd.edu

Received 16 July 2009; accepted 6 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.143; data-to-parameter ratio = 10.4.

The asymmetric unit of the title compound, $C_{18}H_{18}N_2O_3$, contains two molecules. The fused rings of both molecules are almost planar, with dihedral angles of 3.1 (1) and 2.8 (2)° between the fused rings. The furan rings are rotated by 43.85 (15) and -21.07 (9)° with respect to the planes of the attached bnzimidazole systems. In the crystal, molecules are linked into infinite chains by intermolecular $O-H\cdots N$ hydrogen bonds.

Related literature

For general background, see Beaulieu *et al.* (2004*a*). For the synthesis, see Beaulieu *et al.* (2004*b*).

Experimental

Crystal data

$C_{18}H_{18}N_2O_3$
$M_r = 310.34$
Monoclinic, P21
a = 9.1402 (3) Å
b = 11.2446 (3) Å

c = 15.6061 (5) Å $\beta = 101.334 (2)^{\circ}$ $V = 1572.68 (8) \text{ Å}^{3}$ Z = 4Cu K α radiation $\mu = 0.74 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEXII CCD area-detector	7859 measured reflections
diffractometer	4379 independent reflections
Absorption correction: multi-scan	4006 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.027$
$T_{\min} = 0.710, \ T_{\max} = 0.733$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.143 & \text{independent and constrained} \\ S &= 1.06 & \text{refinement} \\ 4379 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.73 \text{ e } \text{\AA}^{-3} \\ 423 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.29 \text{ e } \text{\AA}^{-3} \end{split}$$

 $0.50 \times 0.50 \times 0.45 \text{ mm}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O2-H2\cdots N2^{i}$ $O4-H4\cdots N4^{ii}$	0.99 (5) 0.75 (5)	1.66 (5) 1.94 (5)	2.653 (3) 2.653 (4)	173 (4) 159 (5)
Summatry and as (i)	x + 1, y + 1	z + 1 (ii) $z + 1$	-	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x, $y + \frac{1}{2}$, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

All authors contributed equally to this paper. We thank Bao Ho and Cody Higginson for help with compound synthesis and James Golen for help with the structural solution. This work was supported in part by the National Institutes of Health, grant R01 AI72012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2157).

References

- Beaulieu, P. L., Bös, M., Bousquet, Y., Fazal, G., Gauthier, J., Gillard, J., Goulet, S., LaPlante, S., Poupart, M. A., Lefebvre, S., McKercher, G., Pellerin, C., Austel, V. & Kukolj, G. (2004*a*). *Bioorg. Med. Chem. Lett.* 14, 119–124.
- Beaulieu, P. L., Bousquet, Y., Gauthier, J., Gillard, J., Marquis, M., McKercher, G., Pellerin, C., Valois, S. & Kukolj, G. (2004b). J. Med. Chem. 47, 6884– 6892.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o2136 [doi:10.1107/S1600536809031213]

1-Cyclohexyl-2-(3-furyl)-1H-benzimidazole-5-carboxylic acid

S. Dibrov, S. Dutta and T. Hermann

Comment

The title compound is an allosteric inhibitor of the *RNA*-dependent *RNA* polymerase *NS5B* of hepatitis C virus (*HCV*) (Beaulieu *et al.*, 2004*a*). The inhibitor binds with low micromolar affinity (4.3 m*M*) to the *NS5B* polymerase and prevents replication of subgenomic *HCV* replicon in human cells (Beaulieu *et al.*, 2004*b*). The title compound was synthesized following the route described by Beaulieu *et al.*, (2004*b*). We report here the single–crystal *X*-ray structure.

Asymmetric unit of the title compound is composed of molecule 1 and molecule 2 (Fig. 1). They are linked together into infinite non–interacting chains by the intermolecular O2—H2···N2ⁱ and O4—H4···N4ⁱⁱ hydrogen bonds along the *b* axis (Fig. 2). Symmetry codes: (i) -x + 1, y + 1/2, -z + 1 and (ii) -x, y + 1/2, -z.

Experimental

1-Cyclohexyl-2-(furan-3-yl)-1*H*-benzo[*d*]imidazole-5-carboxylic acid was prepared according to the literature procedure (Beaulieu *et al.*, 2004*b*). In a sample vial, 15 mg of compound was taken and dissolved in CH₂Cl₂–*DMSO*/ 9:1 mixture. Upon slow evaporation at 273 K within 2 months the crystals are formed as colourless blocks.

Refinement

Acidic H2 and H4 hydrgen atoms were located in a Fourier difference map and refined freely with distances obtained for O2—H2 = 1.00 (5) and O4—H4 = 0.76 (5). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

The highest density value is peak with a value of 0.73 e Å⁻³ at coordinates 0.5281 0.1307 0.9370 that is 1.21Å from atom H6 and 1.24Å from atom C17.

1455 Friedel pairs were merged.

Figures

Fig. 1. The asymmetric units of structure of title compound, with the atom–numbering scheme. The displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2. The crystal packing of one of the two molecules, viewed down the *a* axis, showing the molecules are linked along the *b* axis. Intermolecular hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x + 1, y + 1/2, -z + 1 and (ii) -x + 1, y - 1/2, -z + 1. Second molecule behaves similarly.

1-Cyclohexyl-2-(3-furyl)-1H-benzimidazole-5-carboxylic acid

 $F_{000} = 656$

 $\theta = 2.9 - 65.6^{\circ}$

 $\mu = 0.74 \text{ mm}^{-1}$

Block, colourless $0.50 \times 0.50 \times 0.45 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.311 {\rm Mg m}^{-3}$

Cu Ka radiation, $\lambda = 1.54178$ Å

Cell parameters from 5005 reflections

Crystal data

C₁₈H₁₈N₂O₃ $M_r = 310.34$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 9.1402 (3) Å b = 11.2446 (3) Å c = 15.6061 (5) Å $\beta = 101.334$ (2)° V = 1572.68 (8) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	4379 independent reflections
Radiation source: fine-focus sealed tube	4006 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 100 K	$\theta_{\text{max}} = 66.4^{\circ}$
φ and ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -10 \rightarrow 10$
$T_{\min} = 0.710, \ T_{\max} = 0.733$	$k = -13 \rightarrow 12$
7859 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0919P)^2 + 0.4805P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.007$
4379 reflections	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
423 parameters	$\Delta \rho_{\rm min} = -0.29 \ e \ {\rm \AA}^{-3}$

Extinction correction: none

1 restraint Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5638 (3)	0.67629 (19)	0.56838 (16)	0.0384 (6)
O2	0.5668 (3)	0.5223 (2)	0.47898 (14)	0.0335 (5)
H2	0.574 (5)	0.581 (4)	0.432 (3)	0.059 (13)*
O3	0.3079 (3)	-0.1746 (2)	0.74288 (17)	0.0496 (7)
N1	0.4370 (3)	0.2274 (3)	0.79176 (17)	0.0330 (6)
N2	0.4291 (3)	0.1685 (2)	0.65399 (17)	0.0283 (6)
C1	0.5558 (3)	0.5707 (3)	0.5547 (2)	0.0292 (7)
C2	0.5294 (4)	0.4824 (3)	0.6213 (2)	0.0277 (7)
C3	0.5382 (4)	0.5195 (3)	0.7078 (2)	0.0345 (8)
Н3	0.5628	0.6000	0.7224	0.041*
C4	0.5126 (4)	0.4436 (3)	0.7724 (2)	0.0358 (8)
H4B	0.5186	0.4696	0.8309	0.043*
C5	0.4767 (4)	0.3249 (3)	0.7470 (2)	0.0297 (7)
C6	0.4321 (5)	0.2198 (4)	0.8860 (2)	0.0465 (9)
H6	0.4030	0.1356	0.8946	0.056*
C7	0.3093 (4)	0.2922 (4)	0.9103 (2)	0.0448 (9)
H7A	0.2132	0.2687	0.8728	0.054*
H7B	0.3265	0.3773	0.8991	0.054*
C8	0.2991 (6)	0.2766 (6)	1.0046 (3)	0.0717 (15)
H8A	0.2319	0.3385	1.0203	0.086*
H8B	0.2534	0.1983	1.0116	0.086*
С9	0.4430 (6)	0.2838 (8)	1.0658 (3)	0.093 (2)
H9A	0.4290	0.2613	1.1250	0.111*
H9B	0.4793	0.3669	1.0684	0.111*
C10	0.4080 (4)	0.1373 (3)	0.7332 (2)	0.0310 (7)
C11	0.4698 (3)	0.2865 (3)	0.6616 (2)	0.0267 (7)
C12	0.4959 (3)	0.3654 (3)	0.5968 (2)	0.0267 (7)
H12	0.4909	0.3398	0.5383	0.032*
C13	0.3512 (4)	0.0199 (3)	0.7503 (2)	0.0359 (8)
C14	0.3900 (5)	-0.0844 (3)	0.7186 (3)	0.0432 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.4641	-0.0935	0.6842	0.052*
C15	0.2130 (5)	-0.1246 (4)	0.7902 (3)	0.0476 (10)
H15	0.1418	-0.1675	0.8149	0.057*
C16	0.2339 (4)	-0.0080 (3)	0.7971 (2)	0.0396 (9)
H16	0.1820	0.0464	0.8269	0.047*
C17	0.5769 (5)	0.2333 (5)	0.9441 (3)	0.0608 (12)
H17A	0.6121	0.3164	0.9421	0.073*
H17B	0.6509	0.1803	0.9251	0.073*
C18	0.5620 (5)	0.2013 (6)	1.0386 (3)	0.0738 (17)
H18A	0.6591	0.2121	1.0790	0.089*
H18B	0.5315	0.1172	1.0413	0.089*
O4	-0.0250 (4)	1.0807 (2)	-0.01851 (16)	0.0440 (7)
H4	-0.071 (5)	1.119 (4)	-0.053 (3)	0.047 (13)*
O5	-0.0456 (3)	1.2233 (2)	0.07781 (15)	0.0367 (6)
O6	0.1913 (3)	0.3434 (2)	0.23203 (17)	0.0481 (7)
N3	0.1075 (3)	0.7453 (2)	0.30021 (16)	0.0274 (6)
N4	0.1229 (3)	0.7088 (2)	0.16093 (17)	0.0294 (6)
C19	-0.0173 (4)	1.1217 (3)	0.0617 (2)	0.0313 (7)
C20	0.0290 (4)	1.0279 (3)	0.1289 (2)	0.0306 (7)
C21	0.0299 (4)	1.0543 (3)	0.2180 (2)	0.0339 (8)
H21	0.0115	1.1337	0.2340	0.041*
C22	0.0563 (4)	0.9688 (3)	0.2813 (2)	0.0336 (8)
H22	0.0563	0.9879	0.3406	0.040*
C23	0.0834 (4)	0.8530 (3)	0.2568 (2)	0.0277 (7)
C24	0.0788 (4)	0.7156 (3)	0.3880 (2)	0.0344 (8)
H24	0.0636	0.6275	0.3874	0.041*
C25	-0.0670 (4)	0.7689 (4)	0.4042 (2)	0.0447 (9)
H25A	-0.0587	0.8566	0.4073	0.054*
H25B	-0.1496	0.7481	0.3553	0.054*
C26	-0.1004 (4)	0.7210 (4)	0.4894 (2)	0.0508 (10)
H26A	-0.1911	0.7603	0.5016	0.061*
H26B	-0.1207	0.6346	0.4834	0.061*
C27	0.0277 (4)	0.7422 (4)	0.5646 (2)	0.0462 (9)
H27A	0.0047	0.7054	0.6181	0.055*
H27B	0.0401	0.8288	0.5750	0.055*
C28	0.1737 (4)	0.6900 (4)	0.5466 (2)	0.0470 (10)
H28A	0.2567	0.7105	0.5954	0.056*
H28B	0.1657	0.6022	0.5432	0.056*
C29	0.2072 (4)	0.7384 (4)	0.4609 (2)	0.0414 (9)
H29A	0.2263	0.8250	0.4665	0.050*
H29B	0.2978	0.6996	0.4483	0.050*
C30	0.1327 (4)	0.6622 (3)	0.2394 (2)	0.0275 (7)
C31	0.0913 (4)	0.8276 (3)	0.1692 (2)	0.0284 (7)
C32	0.0629 (4)	0.9149 (3)	0.1045 (2)	0.0314 (7)
H32	0.0669	0.8971	0.0455	0.038*
C33	0.1669 (4)	0.5375 (3)	0.2578 (2)	0.0316 (8)
C34	0.1464 (5)	0.4501 (3)	0.1967 (2)	0.0427 (9)
H34	0.1056	0.4624	0.1365	0.051*
C35	0.2435 (4)	0.3639 (3)	0.3181 (2)	0.0402 (9)
	5 C		5 C	× /

H35	0.2833	0.3044	0.3594	0.048*
C36	0.2317 (4)	0.4778 (3)	0.3373 (2)	0.0396 (9)
H36	0.2607	0.5132	0.3933	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0570 (15)	0.0210 (11)	0.0376 (13)	-0.0062 (11)	0.0105 (11)	-0.0037 (10)
O2	0.0536 (14)	0.0232 (11)	0.0261 (12)	-0.0006 (10)	0.0141 (10)	0.0000 (10)
O3	0.0725 (19)	0.0356 (14)	0.0444 (15)	-0.0083 (13)	0.0205 (13)	0.0069 (12)
N1	0.0425 (15)	0.0356 (15)	0.0242 (13)	0.0028 (13)	0.0148 (11)	0.0024 (12)
N2	0.0379 (14)	0.0243 (13)	0.0250 (14)	-0.0011 (11)	0.0117 (11)	0.0048 (11)
C1	0.0297 (16)	0.0297 (17)	0.0278 (17)	-0.0007 (13)	0.0047 (13)	-0.0006 (13)
C2	0.0328 (16)	0.0237 (15)	0.0275 (16)	0.0003 (13)	0.0079 (13)	-0.0013 (13)
C3	0.0452 (19)	0.0275 (16)	0.0318 (17)	-0.0029 (15)	0.0103 (14)	-0.0042 (15)
C4	0.048 (2)	0.0358 (19)	0.0259 (17)	-0.0027 (16)	0.0119 (14)	-0.0061 (15)
C5	0.0321 (17)	0.0330 (17)	0.0270 (16)	0.0006 (14)	0.0132 (13)	0.0022 (14)
C6	0.059 (2)	0.059 (2)	0.0251 (18)	0.012 (2)	0.0184 (16)	0.0053 (18)
C7	0.044 (2)	0.065 (3)	0.0292 (18)	0.0042 (19)	0.0172 (15)	-0.0026 (18)
C8	0.080 (3)	0.104 (4)	0.039 (2)	0.023 (3)	0.031 (2)	0.001 (3)
С9	0.065 (3)	0.181 (7)	0.036 (2)	0.018 (4)	0.020 (2)	-0.018 (3)
C10	0.0334 (17)	0.0314 (17)	0.0308 (18)	0.0010 (14)	0.0129 (14)	-0.0003 (14)
C11	0.0290 (15)	0.0250 (15)	0.0272 (16)	0.0008 (13)	0.0078 (12)	0.0015 (13)
C12	0.0337 (17)	0.0238 (15)	0.0239 (15)	-0.0008 (13)	0.0090 (13)	0.0002 (13)
C13	0.0413 (19)	0.0357 (18)	0.0326 (18)	-0.0024 (16)	0.0116 (14)	0.0075 (15)
C14	0.059 (2)	0.0337 (19)	0.042 (2)	-0.0020 (18)	0.0239 (17)	0.0069 (16)
C15	0.059 (2)	0.049 (2)	0.040 (2)	-0.0145 (19)	0.0240 (18)	0.0060 (18)
C16	0.044 (2)	0.039 (2)	0.0387 (19)	-0.0033 (16)	0.0165 (16)	0.0024 (16)
C17	0.053 (2)	0.087 (3)	0.046 (2)	0.002 (2)	0.0174 (19)	-0.006 (2)
C18	0.052 (2)	0.140 (5)	0.029 (2)	0.014 (3)	0.0087 (18)	-0.004 (3)
O4	0.080 (2)	0.0250 (12)	0.0266 (14)	0.0108 (13)	0.0106 (13)	0.0031 (11)
05	0.0565 (15)	0.0239 (12)	0.0341 (13)	0.0049 (11)	0.0194 (10)	-0.0001 (10)
O6	0.0618 (17)	0.0331 (13)	0.0502 (16)	0.0133 (12)	0.0132 (13)	0.0068 (12)
N3	0.0308 (13)	0.0306 (13)	0.0229 (13)	0.0004 (11)	0.0102 (11)	0.0017 (11)
N4	0.0412 (15)	0.0223 (13)	0.0264 (14)	-0.0007 (11)	0.0110 (11)	0.0007 (11)
C19	0.0425 (19)	0.0275 (18)	0.0264 (17)	-0.0039 (15)	0.0128 (14)	-0.0035 (14)
C20	0.0419 (18)	0.0232 (15)	0.0286 (16)	-0.0032 (14)	0.0119 (13)	-0.0026 (13)
C21	0.049 (2)	0.0245 (17)	0.0315 (18)	-0.0046 (14)	0.0153 (15)	-0.0053 (14)
C22	0.046 (2)	0.0330 (17)	0.0237 (16)	-0.0020 (15)	0.0111 (14)	-0.0031 (15)
C23	0.0319 (17)	0.0284 (16)	0.0252 (16)	-0.0003 (13)	0.0115 (13)	0.0021 (13)
C24	0.0462 (19)	0.0370 (18)	0.0234 (16)	0.0058 (16)	0.0149 (14)	0.0087 (15)
C25	0.0390 (19)	0.060 (2)	0.037 (2)	0.0021 (18)	0.0117 (15)	0.0075 (18)
C26	0.045 (2)	0.068 (3)	0.044 (2)	-0.002 (2)	0.0188 (17)	0.003 (2)
C27	0.055 (2)	0.056 (2)	0.0303 (18)	0.0059 (19)	0.0165 (16)	0.0051 (18)
C28	0.050 (2)	0.060 (3)	0.0288 (19)	-0.003 (2)	0.0045 (16)	0.0063 (18)
C29	0.0390 (19)	0.050 (2)	0.0376 (19)	0.0004 (17)	0.0135 (15)	-0.0036 (17)
C30	0.0303 (16)	0.0280 (16)	0.0266 (16)	-0.0033 (13)	0.0115 (13)	0.0032 (13)
C31	0.0356 (17)	0.0237 (15)	0.0279 (16)	-0.0019 (13)	0.0111 (13)	-0.0016 (13)

622	0.04(1.(1.0)	0.0001 (1.0)	0.0000 (1.6)	0.0050 (1.5)	0.0115 (10)	0.0005 (10)
C32	0.0461 (19)	0.0281 (16)	0.0220 (16)	-0.0053 (15)	0.0115 (13)	-0.002/(13)
C33	0.0312 (17)	0.0310(17)	0.0356 (18)	0.0018 (14)	0.0137 (14)	0.0069 (15)
C34	0.063(2)	0.0302 (18)	0.038 (2)	0.0144 (17)	0.0168 (17)	0.0068 (16)
C35	0.03 / (19)	0.037(2)	0.046 (2)	0.0070(15)	0.0099 (16)	0.013/(1/)
C36	0.041 (2)	0.040 (2)	0.0349 (19)	0.0012 (16)	0.0021 (15)	0.0108 (17)
Geometric paran	neters (Å, °)					
01—C1		1.207 (4)	O4—C	19	1.324	(4)
O2—C1		1.322 (4)	O4—H4	4	0.75 ((5)
O2—H2		0.99 (5)	O5—C	19	1.208	(4)
O3—C14		1.359 (5)	O6—C	34	1.350	(4)
O3—C15		1.366 (5)	O6—C.	35	1.354	(5)
N1-C10		1.355 (4)	N3—C2	23	1.383	(4)
N1C5		1.387 (4)	N3—C3	30	1.383	(4)
N1—C6		1.482 (4)	N3—C2	24	1.482	(4)
N2-C10		1.335 (4)	N4—C.	30	1.319	(4)
N2-C11		1.377 (4)	N4—C.	31	1.378	(4)
C1—C2		1.492 (5)	C19—C	220	1.489	(5)
C2—C12		1.387 (4)	C20—C	232	1.378	(5)
C2—C3		1.400 (4)	C20—C	221	1.421	(5)
C3—C4		1.376 (5)	C21—C	222	1.366	(5)
С3—Н3		0.9500	C21—H21		0.950	0
C4—C5		1.411 (5)	C22—C	223	1.393	(5)
C4—H4B		0.9500	С22—Н	122	0.950	0
C5—C11		1.391 (4)	C23—C	231	1.413	(4)
C6—C17		1.459 (6)	C24—C	229	1.488	(5)
C6—C7		1.495 (6)	C24—C	225	1.528	(5)
С6—Н6		1.0000	C24—H	124	1.000	0
С7—С8		1.504 (5)	C25—C	226	1.518	(5)
C7—H7A		0.9900		125A	0.990	0
C7—H7B		0.9900	C25—H25B		0.990	0
С8—С9	1.468 (7) C26—C27		227	1.505	(5)	
C8—H8A		0.9900	C26—H	126A	0.990	0
C8—H8B		0.9900	C26—H	H26B	0.990	0
C9—C18		1.550 (8)	C27—C	228	1.533	(6)
С9—Н9А		0.9900	С27—Н	127A	0.990	0
С9—Н9В		0.9900	С27—Н	ł27B	0.990	0
C10—C13	0—C13		C28—C	229	1.530	(5)
C11—C12	1—C12 1.401 (4)		C28—H	128A	0.990	0
C12—H12		0.9500	C28—H	128B	0.990	0
C13—C14		1.346 (5)	C29—H	129A	0.990	0
C13—C16		1.447 (5)	C29—H	129B	0.990	0
C14—H14		0.9500	C30—C	233	1.452	(5)
C15—C16		1.326 (6)	C31—C	232	1.396	(5)
C15—H15		0.9500	C32—H	132	0.950	0
C16—H16		0.9500	C33—C	234	1.358	(5)
C17—C18		1.549 (6)	C33—C	236	1.433	(4)
C17—H17A		0.9900	C34—H	134	0.950	0

C17—H17B	0.9900	C35—C36	1.324 (5)
C18—H18A	0.9900	С35—Н35	0.9500
C18—H18B	0.9900	С36—Н36	0.9500
C1—O2—H2	114 (3)	C19—O4—H4	114 (3)
C14—O3—C15	106.7 (3)	C34—O6—C35	105.9 (3)
C10—N1—C5	106.7 (3)	C23—N3—C30	106.7 (2)
C10—N1—C6	125.9 (3)	C23—N3—C24	127.5 (3)
C5—N1—C6	127.4 (3)	C30—N3—C24	124.4 (3)
C10—N2—C11	105.0 (3)	C30—N4—C31	106.0 (3)
O1—C1—O2	123.4 (3)	O5—C19—O4	123.5 (3)
O1—C1—C2	122.9 (3)	O5—C19—C20	124.5 (3)
O2—C1—C2	113.6 (3)	O4—C19—C20	111.9 (3)
C12—C2—C3	121.1 (3)	C32—C20—C21	120.4 (3)
C12—C2—C1	119.7 (3)	C32—C20—C19	120.5 (3)
C3—C2—C1	119.2 (3)	C21—C20—C19	119.1 (3)
C4-C3-C2	122.3 (3)	C22—C21—C20	121.8 (3)
C4—C3—H3	118.8	$C_{22} = C_{21} = H_{21}$	119.1
C2—C3—H3	118.8	$C_{20} = C_{21} = H_{21}$	119.1
C_{3} C_{4} C_{5}	116.4 (3)	$C_{21} - C_{22} - C_{23}$	1184(3)
C3—C4—H4B	121.8	C21—C22—H22	120.8
C5-C4-H4B	121.8	C23_C22_H22	120.8
N1 - C5 - C11	105.6 (3)	N3_C23_C22	134.8 (3)
N1-C5-C4	132.5(3)	N3_C23_C31	1053(3)
$C_{11} - C_{5} - C_{4}$	132.5(3)	(22) - (23) - (31)	100.5(3) 1100(3)
C17_C6_N1	121.0(3) 1143(3)	N3_C24_C29	119.9(3) 114.3(3)
C17 - C6 - C7	114.9(3)	$N_{3} = C_{24} = C_{25}$	117.5(3)
N1_C6_C7	114.9(4)	$C_{29} = C_{24} = C_{25}$	112.0(3) 112.8(3)
$C_{17} - C_{6} - H_{6}$	104.4	$N_{2} = C_{2} = C_{2}$	105 4
N1_C6_H6	104.4	$C_{29} = C_{24} = H_{24}$	105.4
C7 C6 H6	104.4	$C_{2} = C_{2} = C_{2$	105.4
$C_{1}^{$	112 2 (2)	$C_{23} = C_{24} = 1124$	103.4 100.8(3)
$C_{0} = C_{1} = C_{0}$	112.3 (3)	$C_{20} = C_{23} = C_{24}$	109.8 (3)
$C_{0} = C_{1} = H_{1} \times K_{1}$	109.2	$C_{20} = C_{25} = H_{25A}$	109.7
C6 C7 H7R	109.2	$C_{24} = C_{25} = H_{25R}$	109.7
C9 C7 H7P	109.2	C24 C25 H25B	109.7
	109.2		109.7
$\Pi/A - C / - \Pi/B$	107.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.2
$C_{9} = C_{8} = C_{7}$	114.2 (4)	$C_2/-C_{20}-C_{23}$	111.5 (5)
$C_{2} = C_{2} = H_{2}$	108.7	$C_2 = C_2 = H_2 = H_2 = A$	109.5
$C_{1} = C_{8} = H_{8} A$	108.7	C_{25} C_{26} H_{26A}	109.3
C9—C8—H8B	108.7	$C_2/-C_{20}-H_{20B}$	109.3
	108.7	C_{23} — C_{20} — H_{20B}	109.5
H8A—C8—H8B	107.0	$H_{20}A - C_{20} - H_{20}B$	108.0
C_{8}	112.1 (5)	$C_{26} = C_{27} = C_{28}$	111.6 (3)
C8—C9—H9A	109.2	C26—C27—H27A	109.3
	109.2	$U_2 = U_2 / - H_2 / A$	109.3
	109.2	U_{20} — U_{2} /— H_{2} /B	109.3
	109.2	$U_2 = U_2 / H_2 / B$	109.3
НУА—СУ—НУВ	107.9	$H_2/A - C_2/-H_2/B$	108.0
N2-C10-N1	112.6 (3)	C29—C28—C27	110.8 (3)

N2-C10-C13	121.8 (3)	C29—C28—H28A	109.5
N1—C10—C13	125.5 (3)	C27—C28—H28A	109.5
N2—C11—C5	110.1 (3)	C29—C28—H28B	109.5
N2-C11-C12	129.0 (3)	C27—C28—H28B	109.5
C5—C11—C12	120.8 (3)	H28A—C28—H28B	108.1
C2-C12-C11	117.5 (3)	C24—C29—C28	110.1 (3)
C2—C12—H12	121.2	С24—С29—Н29А	109.6
C11—C12—H12	121.2	C28—C29—H29A	109.6
C14—C13—C16	105.7 (3)	C24—C29—H29B	109.6
C14—C13—C10	126.2 (3)	C28—C29—H29B	109.6
C16—C13—C10	127.8 (3)	H29A—C29—H29B	108.1
C13—C14—O3	110.4 (3)	N4—C30—N3	112.2 (3)
C13—C14—H14	124.8	N4—C30—C33	122.7 (3)
O3—C14—H14	124.8	N3—C30—C33	125.1 (3)
C16—C15—O3	110.7 (4)	N4—C31—C32	128.8 (3)
С16—С15—Н15	124.6	N4—C31—C23	109.7 (3)
O3—C15—H15	124.6	C32—C31—C23	121.4 (3)
C15—C16—C13	106.4 (4)	C20—C32—C31	117.9 (3)
С15—С16—Н16	126.8	С20—С32—Н32	121.1
C13—C16—H16	126.8	С31—С32—Н32	121.1
C6—C17—C18	109.2 (4)	C34—C33—C36	104.2 (3)
C6—C17—H17A	109.8	C34—C33—C30	124.4 (3)
С18—С17—Н17А	109.8	C36—C33—C30	131.3 (3)
С6—С17—Н17В	109.8	O6—C34—C33	111.5 (3)
C18—C17—H17B	109.8	O6—C34—H34	124.2
H17A—C17—H17B	108.3	С33—С34—Н34	124.2
C17—C18—C9	108.6 (4)	C36—C35—O6	111.1 (3)
C17-C18-H18A	110.0	С36—С35—Н35	124.4
C9—C18—H18A	110.0	O6—C35—H35	124.4
C17—C18—H18B	110.0	C35—C36—C33	107.2 (3)
C9—C18—H18B	110.0	С35—С36—Н36	126.4
H18A—C18—H18B	108.3	С33—С36—Н36	126.4

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···N2 ⁱ	0.99 (5)	1.66 (5)	2.653 (3)	173 (4)
O4—H4····N4 ⁱⁱ	0.75 (5)	1.94 (5)	2.653 (4)	159 (5)
	1.1/2			

Symmetry codes: (i) -x+1, y+1/2, -z+1; (ii) -x, y+1/2, -z.

Fig. 1

Fig. 2

