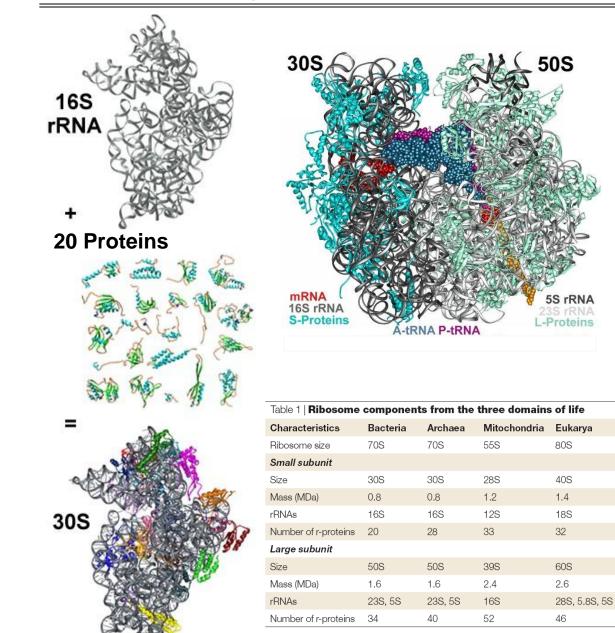
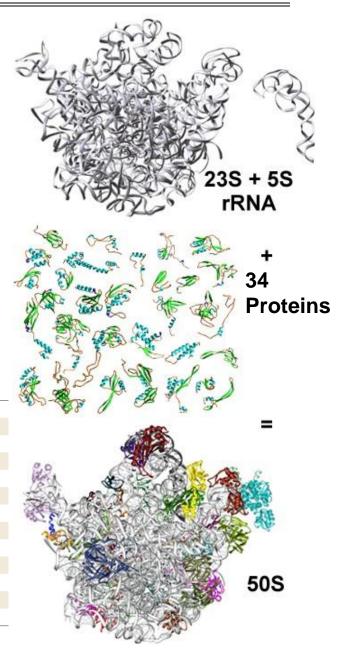
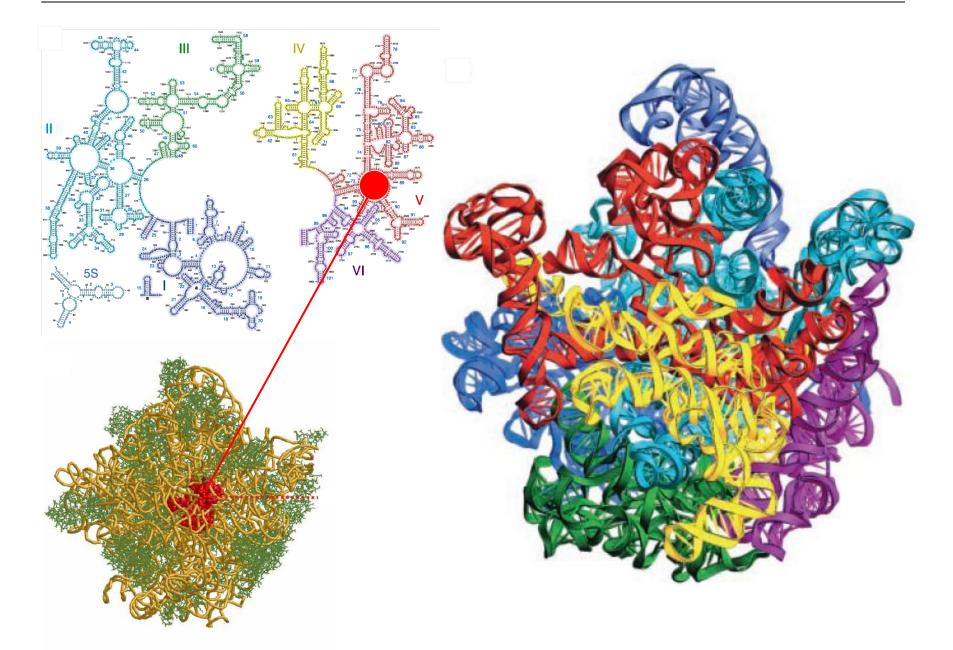

Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2012

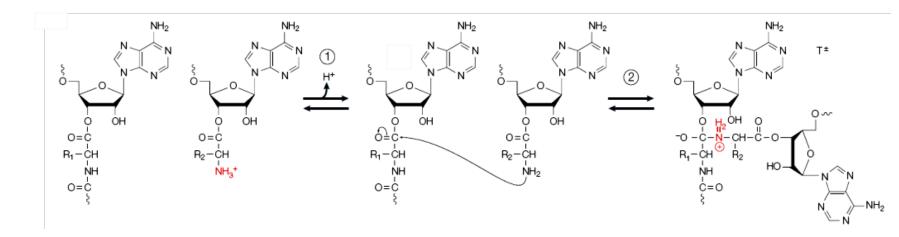


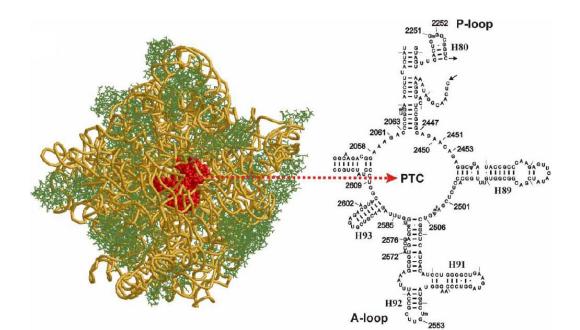

Lecture 10: Antibiotics Classes & Targets Part IV: Drugs Targeting Protein Biosynthesis 50S Subunit and Other Targets

Thomas Hermann

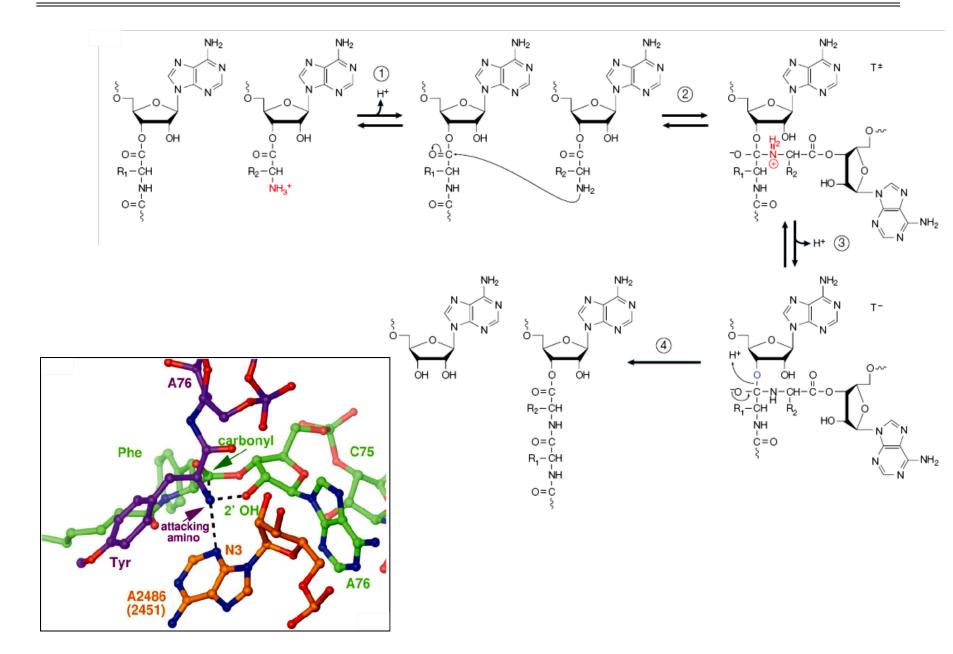

Department of Chemistry & Biochemistry University of California, San Diego

Bacterial Protein Synthesis: Ribosome Composition

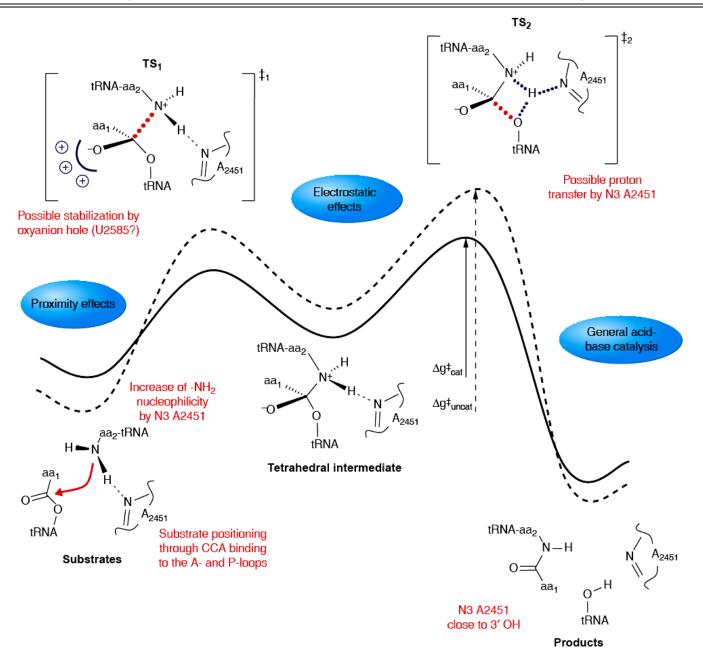


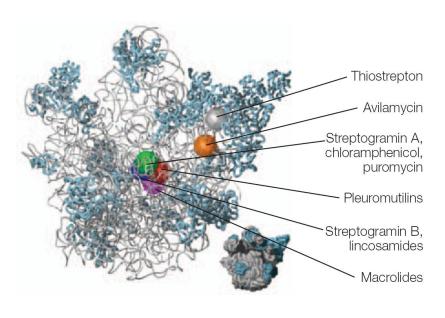


Bacterial Protein Synthesis: 23S & 5S Ribosomal RNA

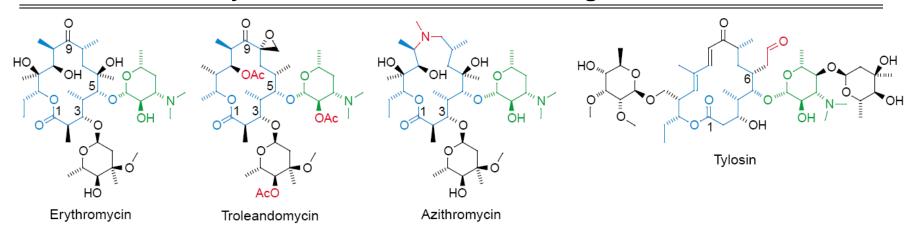


Bacterial Protein Synthesis: The Ribosome is an RNA Enzyme (Ribozyme)

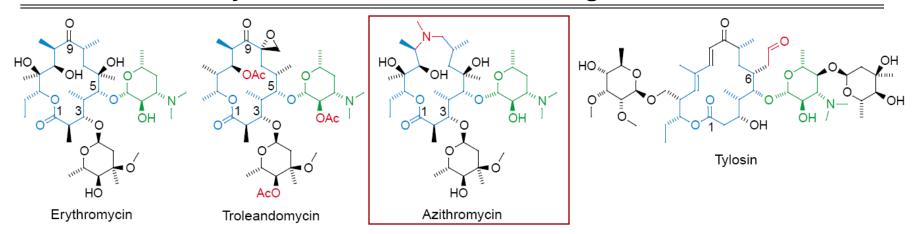


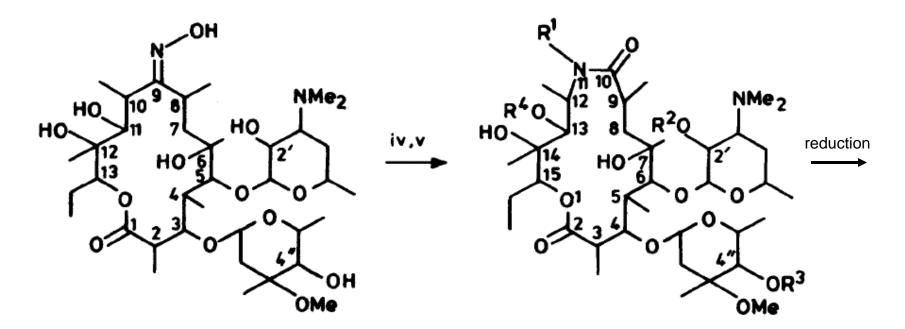

Bacterial Protein Synthesis: The Ribosome is an RNA Enzyme (Ribozyme)

Bacterial Protein Synthesis: The Ribosome is an RNA Enzyme (Ribozyme)

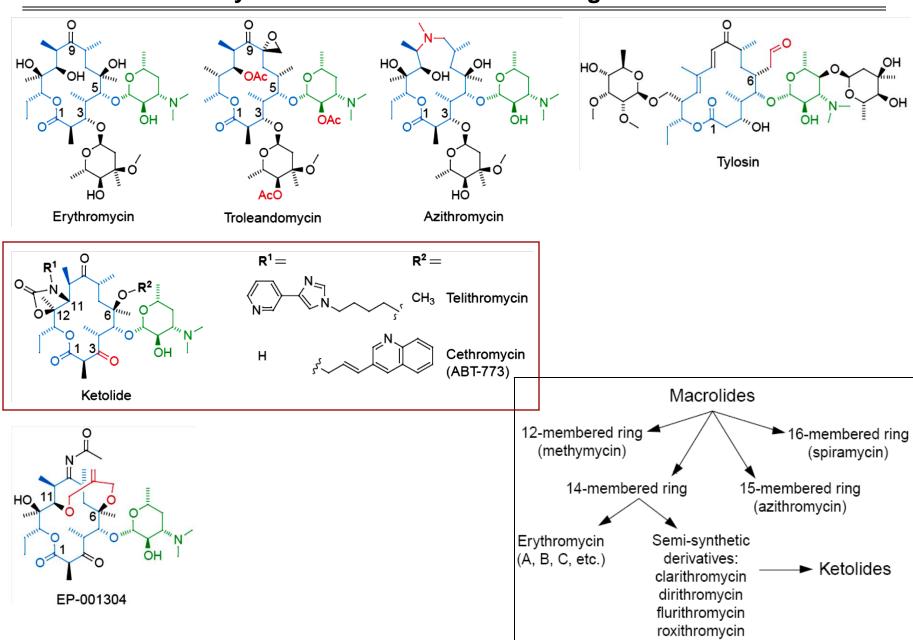


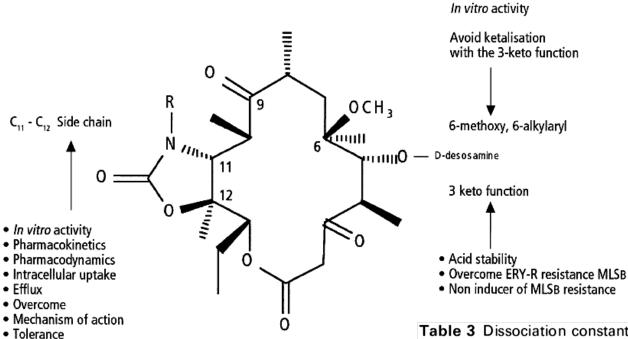
Bacterial Protein Synthesis: 50S Subunit as a Target

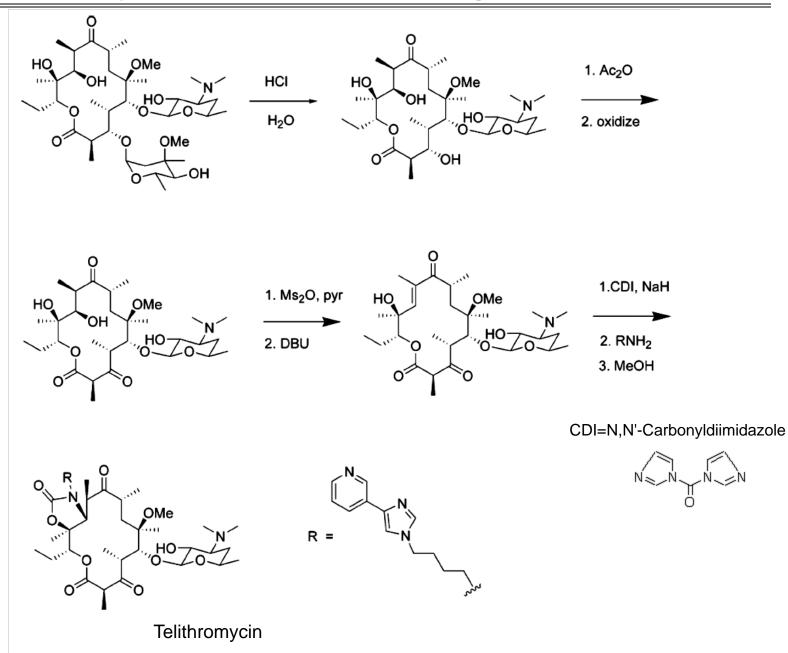

Table 3 Antibiotics that target the 50S ribosomal subunit						
Drug PDB Resolution (Å) System						
Macrolides and keto	lides*					
Carbomycin	1K8A	3.0	Haloarcula			
Spiramycin	1KD1	3.0	Haloarcula			
Tylosin	1K9M	3.0	Haloarcula			
Azithromycin	1M1K	3.2	Haloarcula			
Azithromycin	1NWY	3.3	Deinococcus			
Azithromycin	1YHQ	2.4	Haloarc-2058A			
Erythromycin	1JZY	3.5	Deinococcus			
Erythromycin	1YI2	2.7	Haloarc-2058A			
Clarithromycin	1J5A	3.5	Deinococcus			
Roxithromycin	1JZZ	3.8	Deinococcus			
Troleandomycin	10ND	3.4	Deinococcus			
ABT 773	1NWX	3.5	Deinococcus			
Telithromycin	1P9X	3.4	Deinococcus			
Telithromycin	1YIJ	2.6	Haloarc-2058A			
Streptogramin A [‡]						
Virginiamycin M	1N8R	3.0	Haloarcula			
Virginiamycin M	1YIT	2.8	Haloarc-2058A			
Dalfopristin	1SM1	3.4	Deinococcus			
Streptogramin B [§]						
Quinupristin	1SM1	3.4	Deinococcus			
Quinupristin	1YJW	2.9	Haloarc-2058A			
Lincosamides [‡]						
Clindamycin	1JZX	3.1	Deinococcus			
Clindamycin	1YJN	3.0	Haloarc-2058A			
Nucleoside based#						
Chloramphenicol	1K01	3.5	Deinococcus			
Chloramphenicol	1NJI	3.0	Haloarcula			
Anisomycin	1K73	3.0	Haloarcula			
Sparsomycin	1M90	2.8	Haloarcula			
Blasticidin S	1KC8	3.0	Haloarcula			
Puromycin derivative	1FFZ	3.2	Haloarcula			
Pleuromutilins [‡]						
Tiamulin	1XBP	3.5	Deinococcus			
Valnemulin	-	-	nd			
Oxazolidinones ¹						
Linezolid	-	-	np			
XA043	-	-	nd			



- Isolated first in 1949 from Streptomyces erythreus (erythromycin)
- Obtained by fermentation & semi-synthesis starting from natural products
- Naturally occuring macrolides (erythromycin) are acid-labile, have short $t_{1/2}$ (1.5h) and narrow spectrum (Gram-positives, *Staphylococci*, *Streptococci*, *Bacilli*)
- Semi-synthetic derivatives (clarithromycin, t_{1/2}=3-7h), azalides (azithromycin, t_{1/2}>35h!), have improved stability, PK properties and spectrum (Gram-negatives, *Haemophilus influenzae*, atypical bacteria: *Legionella*, *Chlamydia*, *Mycoplasma*)
- Bind to the peptidyl transferase center at the peptide exit tunnel and block egress of the nascent peptide
- Bacteriostatic (may be bactericidal at high concentrations)
- Used orally
- Reasonable bioavailability: erythromycin: 15-45% (acid lability!), clarithromycin: 55%, azithromycin: 38%
- Extensive tissue and cellular distribution


• Resistance by active efflux (~80% of resistant isolates in US), altered target sites (primary mechanism in Europe)


• Cross-resistance by target modification (ermA/ermC) occurs between all macrolides, and against clindamycin (lincosamides) and synercid (streptogramins)


Azalides: synthesis from oximes by Beckmann rearrangement

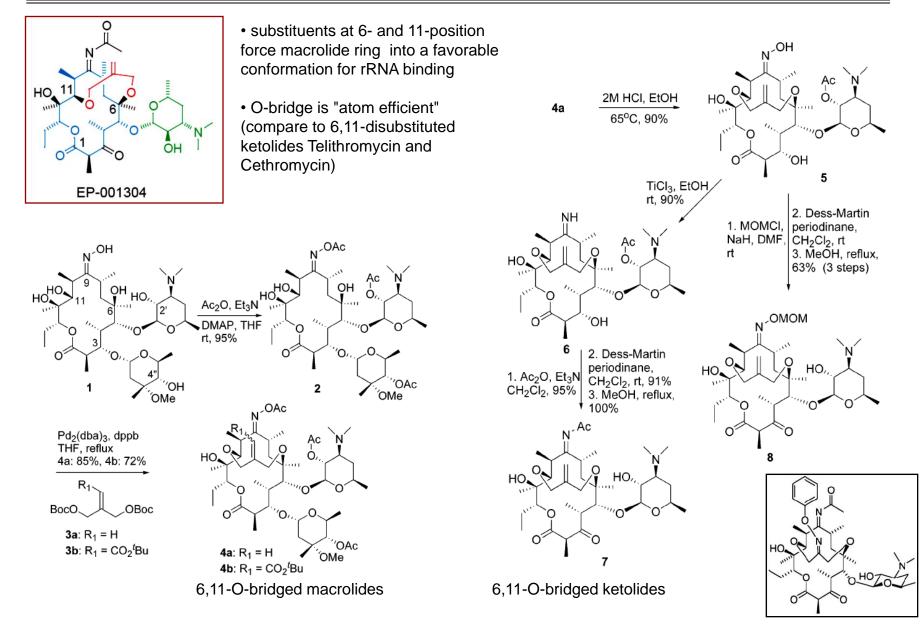
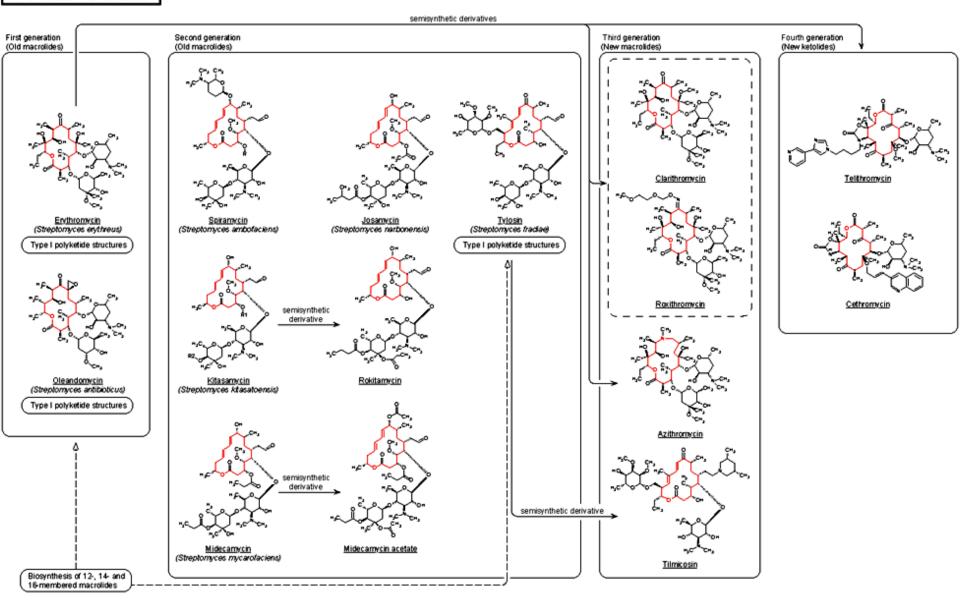
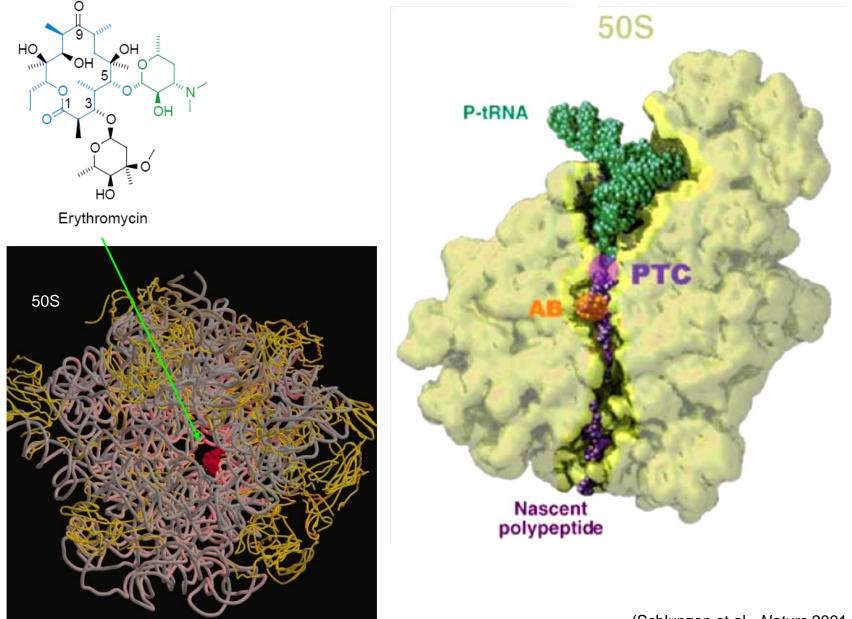


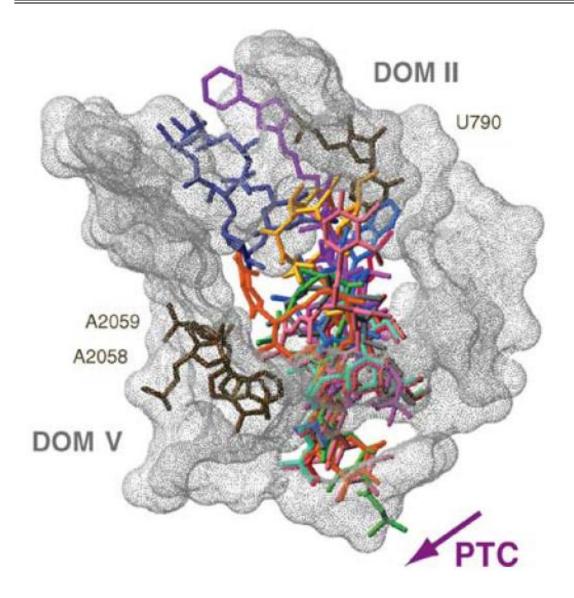
Table 3 Dissociation constants (K_{diss}) of ketolide and macrolide antibiotics for wild-type and A2058G mutant (MLS_B-resistant) ribosomes


	Mean (\pm SD) K	K _{diss} ratio (mutant/	
Antibiotic	Wild-type	Mutant A2058G	wild-type)
Erythromycin	$1.4 \pm 0.2 imes 10^{-8}$	$1.9\pm0.3\times10^{-4}$	14 000
Clarithromycin	$9.5 \pm 1.4 imes 10^{-9}$	$1.7\pm0.4\times10^{-4}$	18 000
HMR 3004	$1.6 \pm 0.3 imes 10^{-9}$	$6.9\pm1.4\times10^{-6}$	4300
Telithromycin	$1.3 \pm 0.2 imes 10^{-9}$	$7.9 \pm 1.9 imes 10^{-6}$	6100
RU 66252	$2.9 \pm 0.2 imes 10^{-9}$	$2.7\pm1.2\times10^{-6}$	9300
RU 56006	$9.8\pm1.1\times10^{-7}$	$> 2.5 \times 10^{-2}$	>25 000

(Wang et al., Org. Lett. 2004, 6, 4455)

MACROLIDES AND KETOLIDES

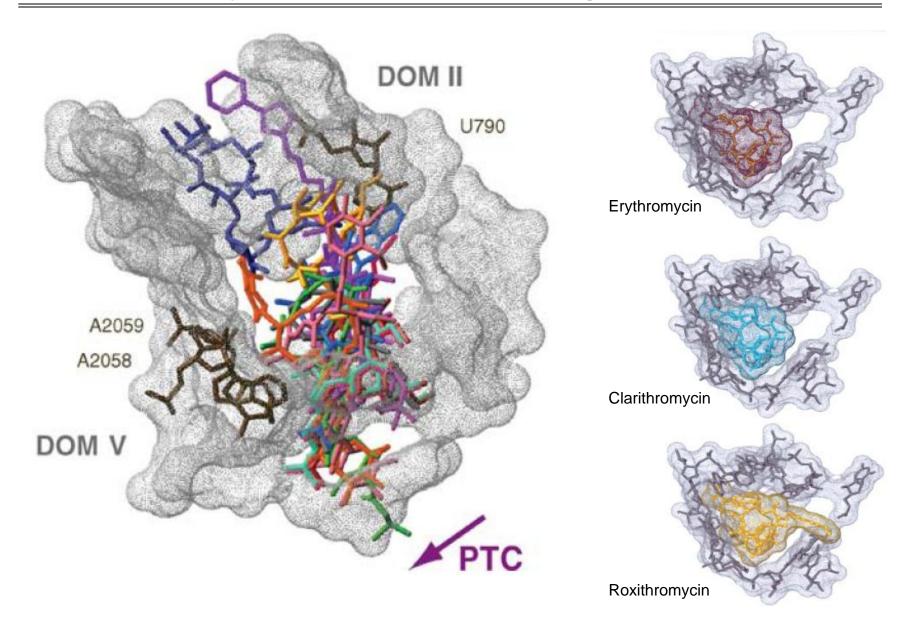


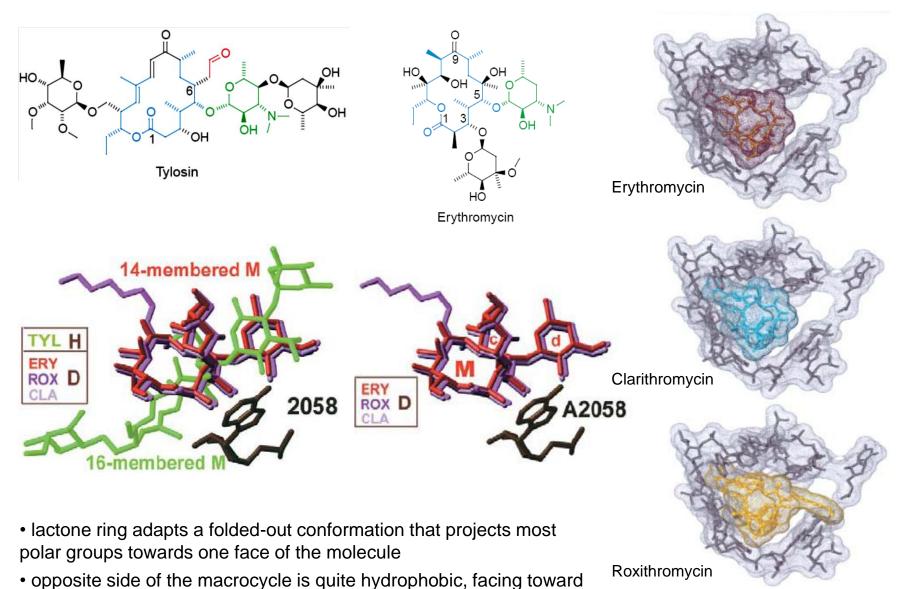

20 12/2/05

Organism (number of strains)	Telithromycin	Erythromycin A	Azithromycin	Clarithromycin
S. pneumoniae pen ^r (110) ery ^r clin ^r (57) ery ^s clin ^s (537) ery ^r clin ^s (50) ery ^r clin ^r (24) 14.8 (1) erm(B) ⁺ mef(A) ⁻ (73) erm(B) ⁺ mef(A) ⁺ (1)	0.12/1 0.06/1 ≤0.06/≤0.06 0.25/0.5 ≤0.06/≤0.06 MIC 0.0002 MBC 0.001 0.03/0.12 MIC 0.06	8/>64 >64/>64 ≤0.06/≤0.06 4/8 >32/>32 >64/>64 MIC 64	4/>16 >16/>16 MIC 0.0006 MBC 0.02	
S. pyogenes (80) ery ^s	range 0.003–0.06 HMR 3004	range 0.003–0.25	range 0.015–0.25	range 0.007–0.0125
ery ^r cMLS phenotype (64) ery ^r iMLS phenotype (120) M phenotype (203)	1/4 0.5/4 0.06/0.12	>128/>128 >128/>128 8/16	>128/>128 >128/>128 4/8	>128/>128 >128/>128 8/8
S. aureus MSSA ery ^s clin ^s (278) MRSA ery ^s clin ^s (140) coagulase-negative staphylococci oxa ^s ery ^s clin ^s (125) oxa ^s ery ^s clin ^s (148)	0.06/0.12 >64/>64 0.06/0.12 >64/>64	0.5/0.5 >64/>64 0.25/0.5 >64/>64	2/2 >16/>16 0.5/1 >16/>16	
Enterococcus faecalis van ^s (377) ery ^r clin ^r (107) van ^r (13)	0.06/4 2/8 2/8	4/>64 >32/32 >32/>32	16/>16 >32/>32 >32/>32	>32/>32 >32/>32
Enterococcus faecium van ^r (90)	8/16	>64/>64	>16/>16	
Bordetella pertussis	0.015/0.03 (n = 51)	0.03/0.06 (n = 34)	0.03/0.06(n=40)	0.06/0.06(n = 37)
Corynebacterium diphtheriae (410)	0.004/0.008	0.015/0.026	0.044/0.058	0.006/0.008
Listeria monocytogenes (15)	0.125/0.25	0.125/0.25	1/1	0.06/0.125
L. pneumophila (46)	0.032/0.125	0.125/0.5		0.032/0.046
C. pneumoniae CWL 029 (ATCC VR 1310) G954(1)	MIC/MBC 0.0156/2.5-5 0.0156/0.31-2.5			
C. pneumoniae (19)	0.0625/0.25	0.125/0.25	0.125/0.25	
M. pneumoniae (25)	≤0.015/≤0.015	≤0.015/≤0.015	≤0.015/≤0.015	≤0.015/≤0.015
M. hominis (30)	16/16	>64/>64	64/>64	64/>64
Ureaplasma urealyticum (15)	0.03/0.03	0.25/0.5	0.25/0.25	0.03/0.03
Rickettsia spp. (6)	MIC range 0.5–1	MIC range 0.125–8		
Bartonella spp. (8)	MIC range 0.003–0.015	MIC range 0.006–0.25		
Coxiella burnetii (3)	MIC range 1	MIC range 8		

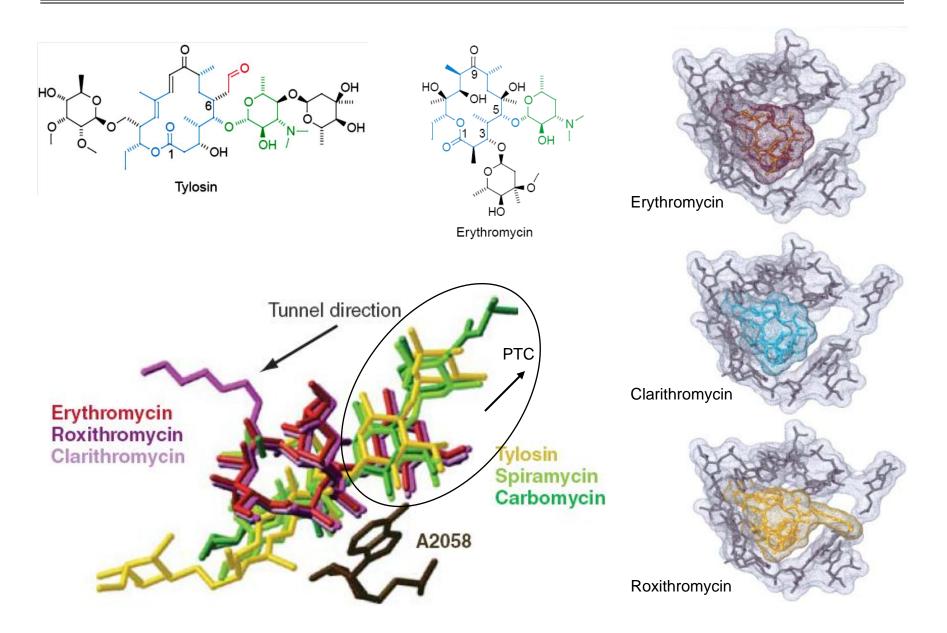
Organism (number of strains)	Telithromycin	Erythromycin A	Azithromycin	Clarithromycin
Neisseria meningitidis (200)	0.12/0.12	1/1	0.5/1	0.12/0.5
Neisseria gonorrhoeae (200)	0.06/0.12	0.5/2	0.12/0.25	0.25/1
<i>H. influenzae</i> β-Lactamase-negative (20) β-Lactamase-positive (24)	1/2 1/2	4/8 4/4	1/1 0.5/1	4/8 4/8
Moraxella catarrhalis (150)	0.12/0.12 MIC pH 6.8/7.4	0.55/25	0.06/0.06	0.12/0.12 MIC pH 6.8/7.4
M. tuberculosis (H37Rv)	>40/>40			20/5
M. avium (ATCC 25291)	5/1.25			0.6/0.15
Helicobacter pylori NCTC 11637 (1)	MIC 0.5 mg/L			
B. fragilis (62)	4/4	4/16		
Bacteroides ovatus (70)	4/4	4/>32		
Fusobacterium spp. (17)	2/4	>32/>32		
Bilophila wadsworthia (29)	2/4	8/16		
Clostridium spp. (29)	≤0.03/0.5	1/4		

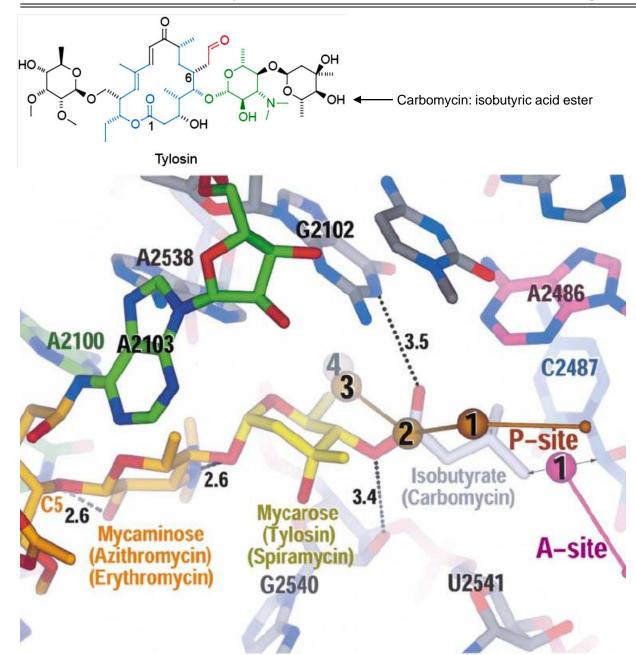
Drug	Erythromycin Base	Clarithromycin/ 14-OH metabolite		Azithromycin	Roxithromycin	Dirithromycin
Dose ** 500 mg* 500 mg BID, dose 5			2–500mg XL once daily, day 5	500mg po BID x 1; 500mg po qd x 5 days	150 mg BID x 10 days	500 mg QD, 10 days
Dosage Form	Dosage Form Varies		Tablet-extended- release	Capsule	Tablet	Tablet
Bioavailability (%)	Varies *	55%		37%	72-85%	6-14%
Cmax (mg/L)	0.3 - 3.5	2.67+/- 0.94 0.88+/-0.20	2.59 +/-0.71 0.79 +/- 0.17	0.62	9.3 +/-1.4	0.48 +/- 0.43
Tmax (h)	4-5	2.6+/- 1.2 2.6+/- 1.1	7.8 +/- 4.0 8.7 +/-5.2	2.3	1.4 +/-1.2	4.0 - 4.5
AUC (0-12) (mg*hr/mL)	1.04 - 8.48	19.59+/-6.49 7.37+/-1.4	**42.1 +/- 13.2 **5.1 +/- 3.2	3.18	70.8+/-14.4	**3.37
T1/2 (h)	1.5 –2	4.5/6.9		35-40	12.4 +/-4.9	42
v	0.64 (L/kg)	222+/-206 (L) ND		23 (L/kg)	0.87 +/-0.63 (L/kg)	800 (L)
Protein binding (%)	65-90%	42-70%		7-50%	73-96%	19%

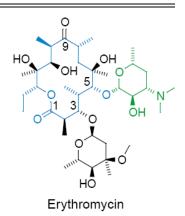

Macrolides


14-member Erythromycin Clarithromycin Roxithromycin Toleandomycin

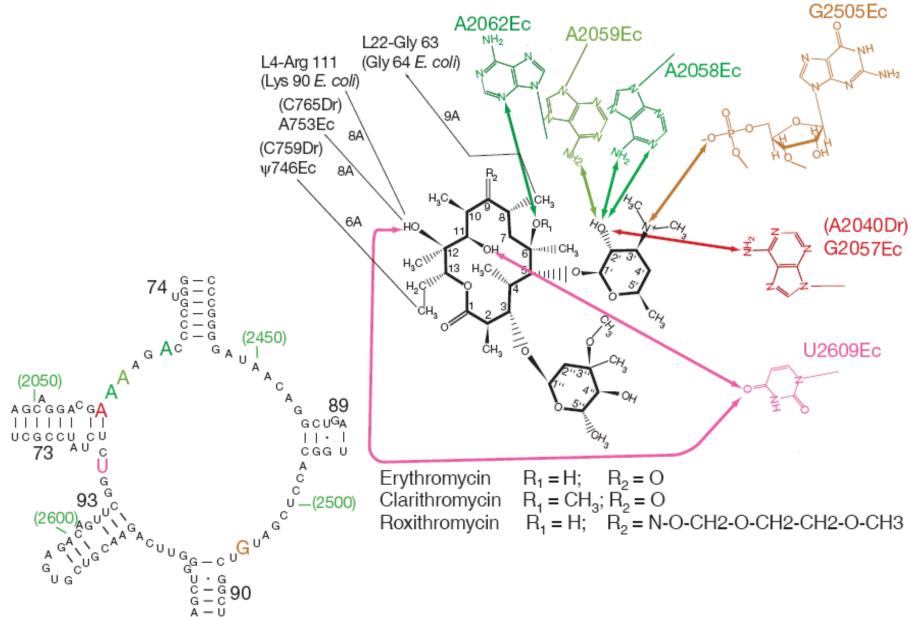
15-member Azithromycin (1°) Azithromycin (2°) Azithromycin (H50S)

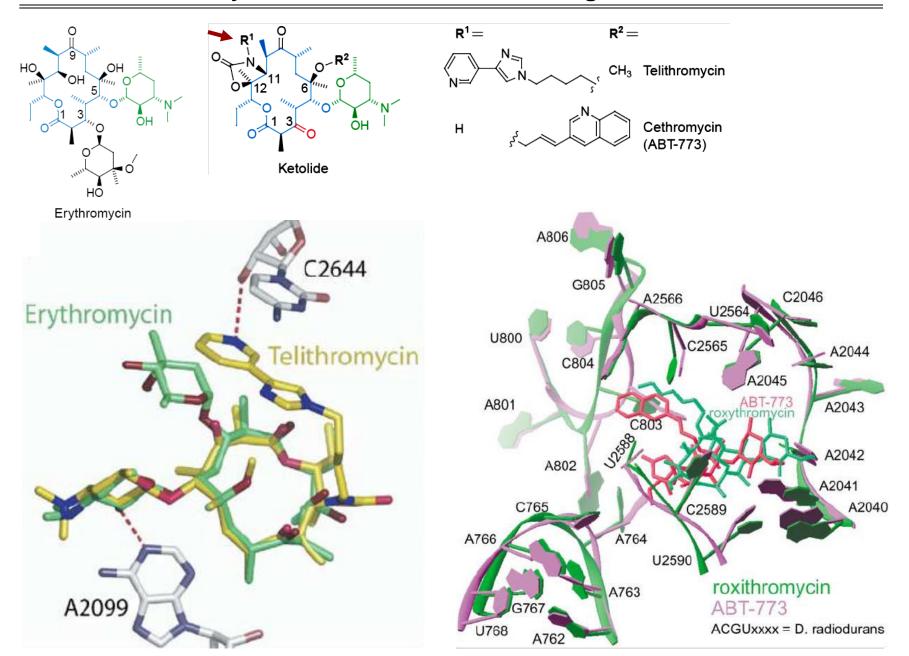

16-member Tylosin (H50S) Spiramycin (H50S) Carbomycin (H50S)

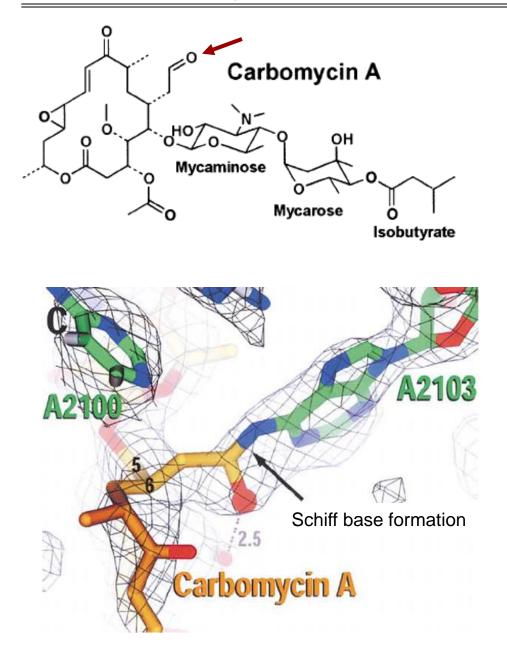

Ketolides ABT-773 Telithromycin

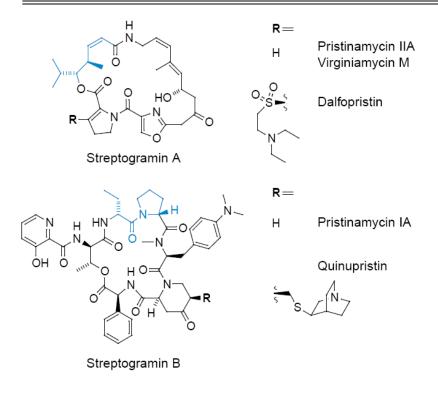


the hydrophobic wall of the peptide exit tunnel

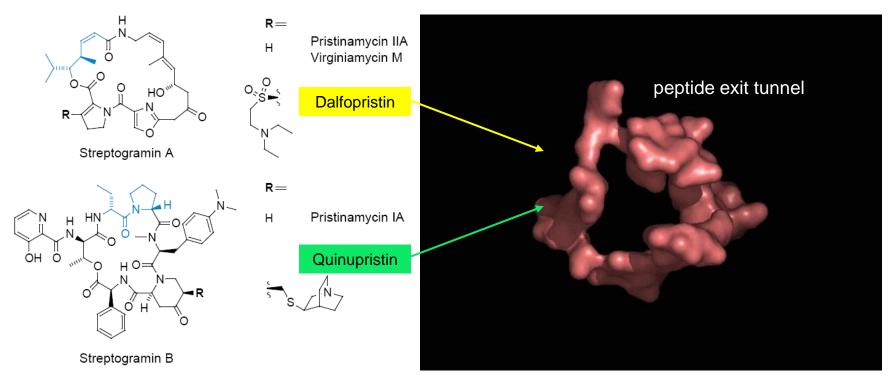


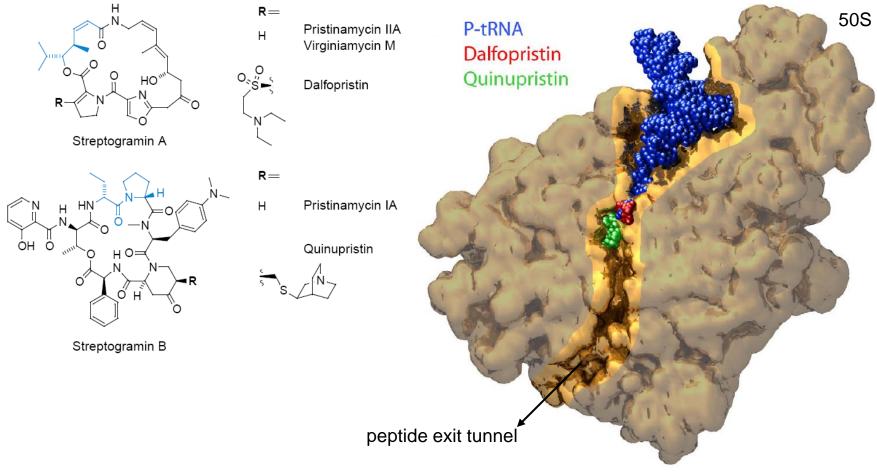



• Carbomycin: reaches to PTC and occupies A-site amino acid binding pocket -> any peptide bond formation blocked

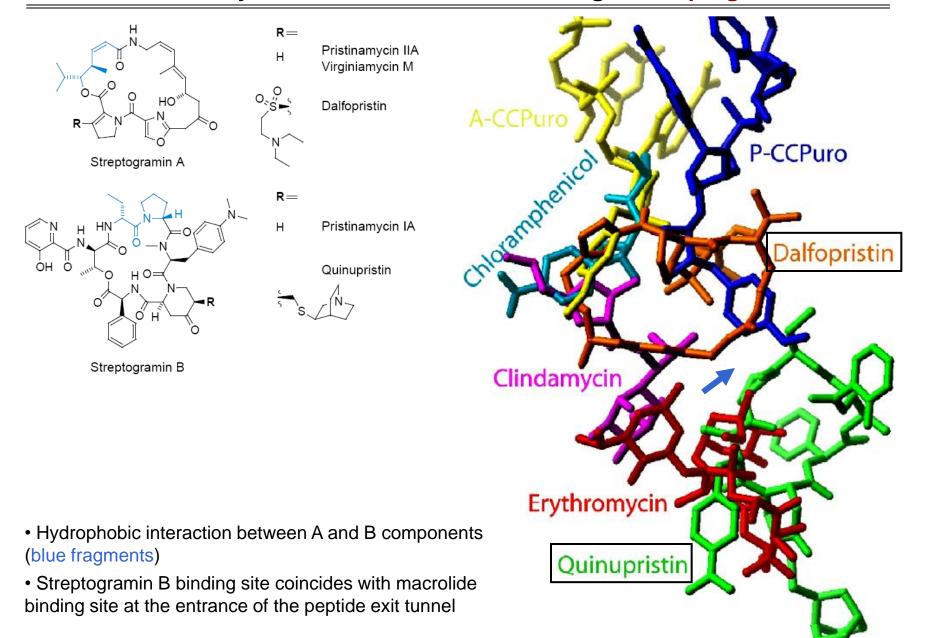

• Tylosin: 2 sugar extensions at 5position -> allows dipeptide formation

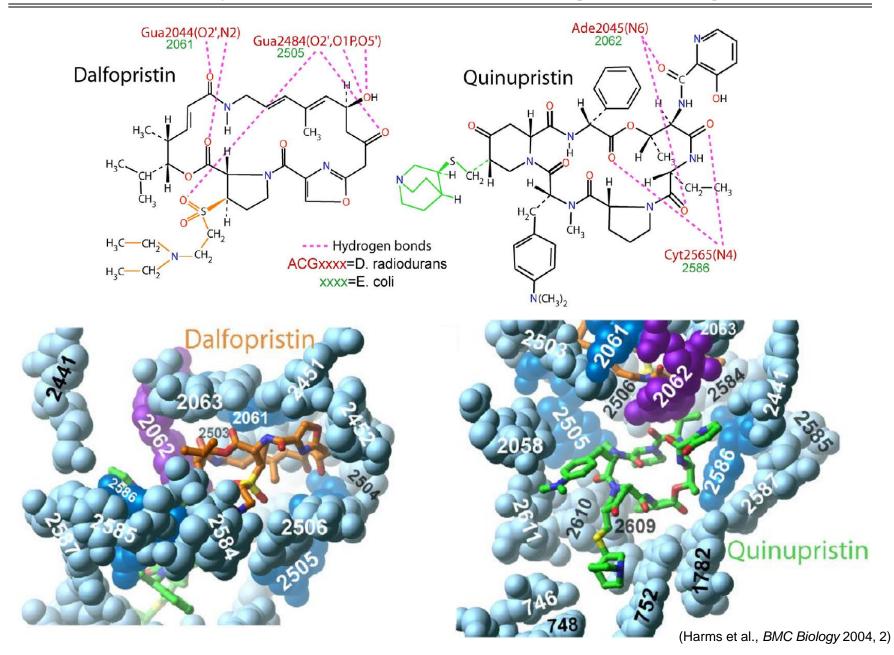
• Erythromycin: 1 sugar extension at 5-position -> allows tetrapeptide formation

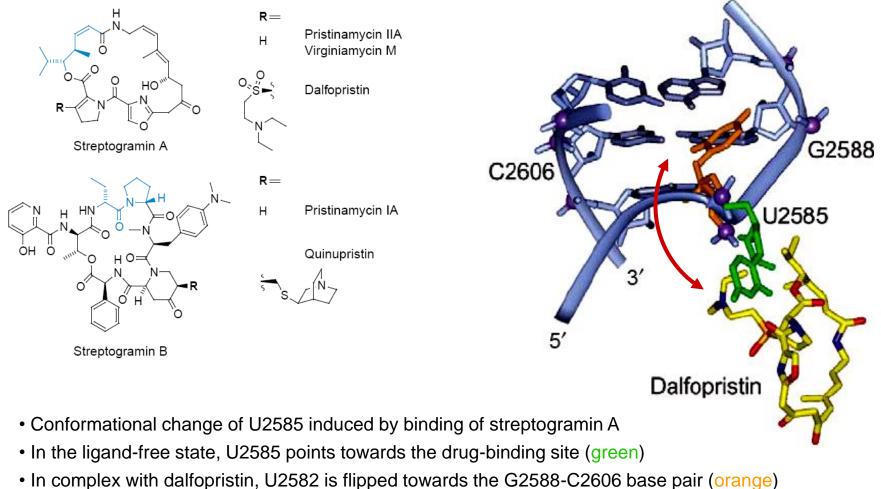




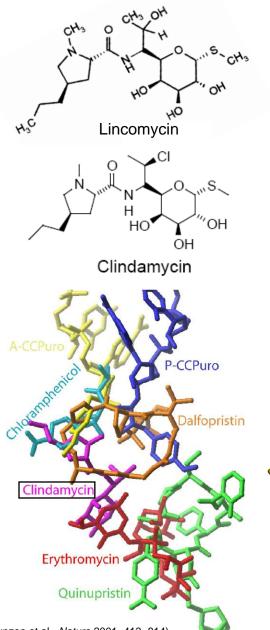
- Isolated in 1950s from *Streptomyces pristina spiralis*
- Obtained by fermentation and semi-synthesis
- Co-synthesized in the same organism (pristinamycin IA/IIA = 7:3 ratio)
- Individual compounds are bacteriostatic, combination acts synergistically and is bactericidal
- Natural products (pristinamycins) have limited water solubility
- Semi-synthetic compounds (dalfopristin, quinupristin) have improved solubility
- 7:3 mixture of quinupristin/dalfopristin (Synercid) approved 1999 in the US (earlier in Europe)
- Active against resistant Gram-positives, *Staphylococci* (inc. MRSA, VISA), *Streptococci*, *Enterococci* (inc. VRE)
- Used by injection
- Resistance by compound and target site modification (same as for macrolides)
- Bind to the peptidyl transferase center at the peptide exit tunnel and block egress of the nascent peptide
- Presence of streptogramin A stimulates binding of streptogramin B component
- Hydrophobic interaction between A and B components (blue fragments)
- Streptogramin B binding site coincides with macrolide binding site at the entrance of the peptide exit tunnel

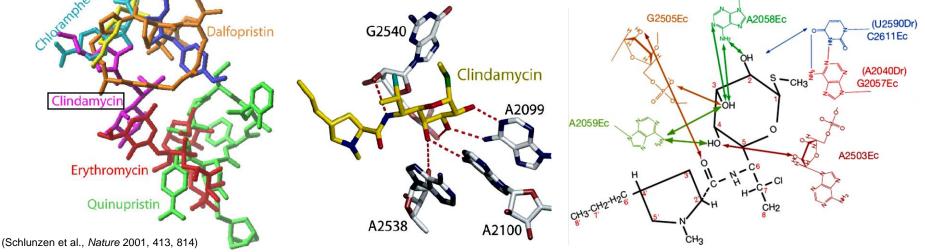

⁽Harms et al., BMC Biology 2004, 2)

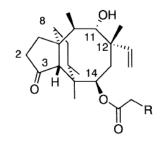

- Bind to the peptidyl transferase center at the peptide exit tunnel and block egress of the nascent peptide
- Presence of streptogramin A stimulates binding of streptogramin B component
- Hydrophobic interaction between A and B components (blue fragments)
- Streptogramin B binding site coincides with macrolide binding site at the entrance of the peptide exit tunnel



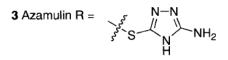
⁽Harms et al., BMC Biology 2004, 2)


- Bind to the peptidyl transferase center at the peptide exit tunnel and block egress of the nascent peptide
- Presence of streptogramin A stimulates binding of streptogramin B component
- Hydrophobic interaction between A and B components (blue fragments)
- Streptogramin B binding site coincides with macrolide binding site at the entrance of the peptide exit tunnel




- and forms hydrogen bonds
- Might lock the PTC in a pseudo-stable conformation that returns to the native state only slowly after removal of the drug
- Hysteresis of an RNA conformational switch
- Time-delayed return of the ribosomal machinery to a productive state?

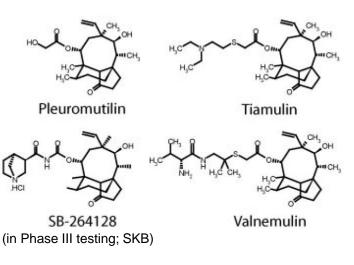
- Isolated in 1962 from *Streptomyces lincolnesis* (lincomycin)
- Obtained by fermentation and semi-synthesis
- Clindamycin (semi-synth.) is absorbed better and has broader spectrum
- Bacteriostatic; may be bactericidal at high concentrations
- Active against resistant Gram-positives, *Staphylococci* (some MRSA), *Streptococci* (pneumoniae, etc.)
- Used by injection or orally; for surgical prophylaxis, neck infections
- Rapid absorption (90% bioavailability); good distribution and tissue penetration
- Binds competitively at the macrolide binding site of 23S rRNA
- Resistance by target site modification (same as for macrolides and streptogramins -> *MLS antibiotics* = macrolide, lincosamide, streptogramin)
- Resistance by increased macrolide efflux does not affect clindamycin



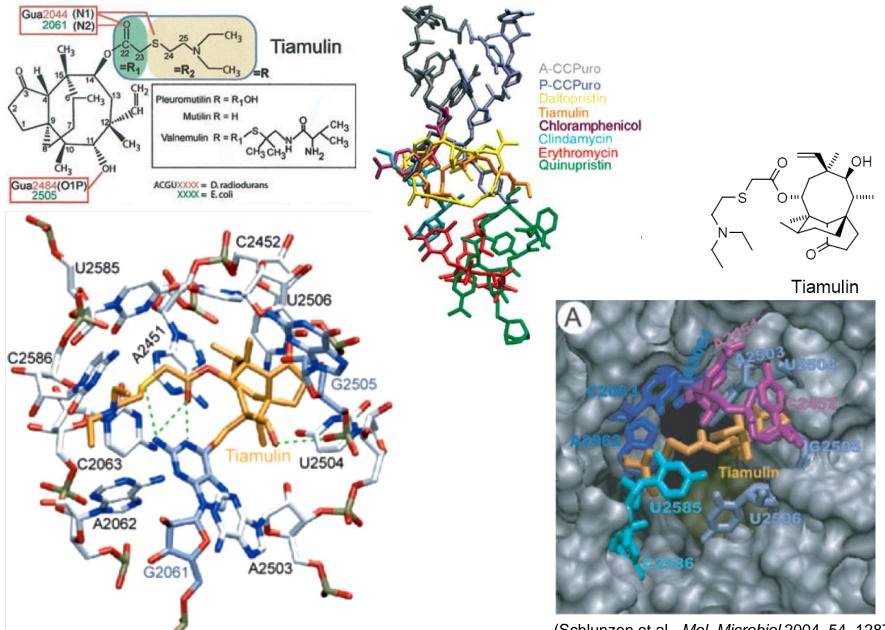
Bacterial Protein Synthesis: 50S Subunit as a Target: Pleuromutilins

1 Pleuromutilin R = OH

2 Tiamulin $R = SCH_2CH_2N(CH_2CH_3)_2$

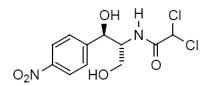


- Tricyclic diterpenoid metabolite isolated in 1951 from *Pleurotus mutilus* (pleuromutilin); semi-synthetic tiamulin introduced in 1970s
- Obtained by fermentation and semi-synthesis (tiamulin, valnemulin)
- Water soluble and readily absorbed but poor PK
- Rapid metabolism; short $t_{1\!/\!2};$ CYP450-mediated hydroxylation at C-2 and C-8
- Active against resistant Gram-positives
- Used orally or by IP injection; exclusively in animals so far (pigs)
- Binds at the PTC of 23S rRNA, almost exactly at the same site as streptogramin A (dalfopristin); overlaps with the binding site of the A-site substrate and thereby blocks peptide synthesis
- Resistance develops slowly; several mutations in ribosomal L3 protein and 23S rRNA required for full resistance

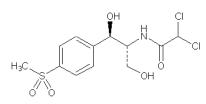

Vol 348 • August 31, 1996

THE LANCET

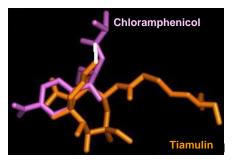
Time to ban all antibiotics as animal growth-promoting agents?


SIR—The UK was the first country to respond to the threat of antimicrobial resistance due to inclusion of antibiotics in animal feeds and the possible risks to public health. In 1968, the Swann Committee recommended that use of therapeutically prescribed antibiotics as growth promoting additives in animal feeds should be prohibited. In 1970 the ban was put into effect in the UK, and other member states of the EC soon followed. The assumption behind the Swann recommendations was that use of other molecules with coincidental antimicrobial properties would not cause pathogens to develop resistance against therapeutically-used antibiotics. This assumption was wrong, as has clearly been shown for avoparcin and vancomycin.1 New developmentsespecially increasing problems with multiresistant bacteria and the search for new antibiotics against them-make it necessary to reconsider the Swann recommendations.

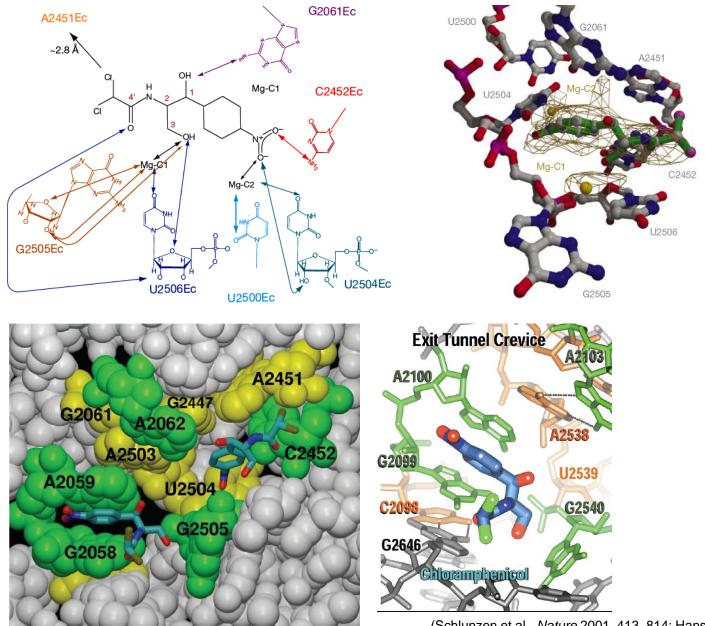
Bacterial Protein Synthesis: 50S Subunit as a Target: Pleuromutilins



(Schlunzen et al., Mol. Microbiol 2004, 54, 1287)


Bacterial Protein Synthesis: 50S Subunit as a Target: Chloramphenicol

Chloramphenicol



Thiamphenicol

- Isolated in 1947 from Streptomyces venezuleae
- · Obtained by fermentation
- Broad activity against Gram+/- bacteria; for serious infections: typhoid fever, meningitis, brucellosis, anaerobes
- Bacteriostatic
- · Used orally, by injection or topically
- Good distribution and bioavailability $(t_{1/2}=4h)$; readily penetrates bacterial and human cells
- Eukaryotic mitochondrial (but not cytoplasmic) ribosomes are susceptible; erythropoietic cells are particularly sensitive
- High toxicity in newborns due to slow metabolism of neonate liver ("gray baby syndrome" when chloramphenicol was widely used in newborns)
- Now rarely used in humans due to serious side-effects caused by mitochondrial toxicity (aplastic anemia, leukopenia, bone marrow damage)
- Thiamphenicol has not been found to cause aplastic anemia and is used in Europe (not approved in the US)
- Binds at the PTC of 23S rRNA, probably at two sites; one of the sites overlaps with pleuromutilin and other PTC-binding antibiotics
- Interaction with 23S rRNA involves Mg⁺⁺ ion
- Blocks peptide synthesis by sterical interference with the aminoacyl moiety in the A site and prevention of the transition state
- Resistance develops by compound modification (acetylation)

Bacterial Protein Synthesis: 50S Subunit as a Target: Chloramphenicol

(Schlunzen et al., *Nature* 2001, 413, 814; Hansen et al., *JMB* 2003, 330, 1061)

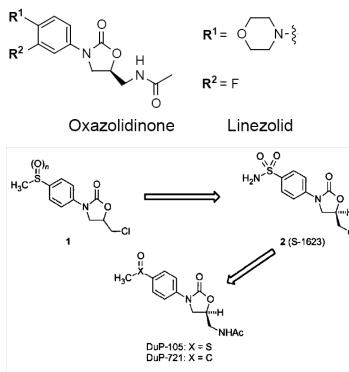
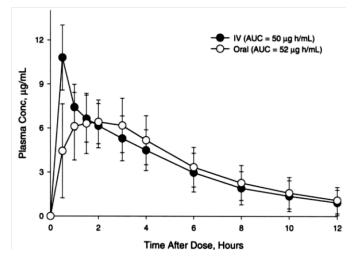
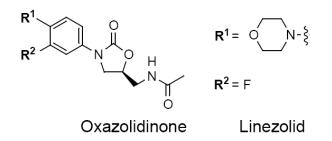




Figure 2. Emergence of the oxazolidinones at DuPont.

- Fully synthetic compounds; discovered at DuPont in an effort to develop oxazolidinones to treat plant diseases; first disclosed 1987 (DuP-105, DuP-721)
- Stopped at DuPont due to toxicity concerns; continued at Upjohn (~1987) -> bought by Pharmacia (1995; approved as Zyvox=linezolid in 2000) -> bought by Pfizer (2003)
- Excellent activity against resistant Gram+ bacteria (*S. aureus*, MRSA, methicillin and vancomycin-resistant *S. aureus*, *Streptococci*, *Enterococci*, VRE, *Bacilli*); inactive against G-
- Bacteriostatic for *Staphylococci, Enterococci*; bactericidal for *Streptococci*
- Used orally and IV as "antibiotic of last resort" for serious G+ infections (in the hospital); superior to vancomycin in MRSA
- Good distribution and extreme bioavailability (100%, $t_{1/2}$ =5h)
- Binds at the PTC of 23S rRNA and prevents formation of the initiation complex by interfering with association of the initiator fMet-tRNA at the P site (unique mechanism)
- Resistance develops by target modification of 23S rRNA (G2576->U mutation; very rare: in 1998-2000, only 8 out of 40,000 tested clinical pathogen strains had MIC >=8 μ g/mI); no cross-resistance to any other antibiotic

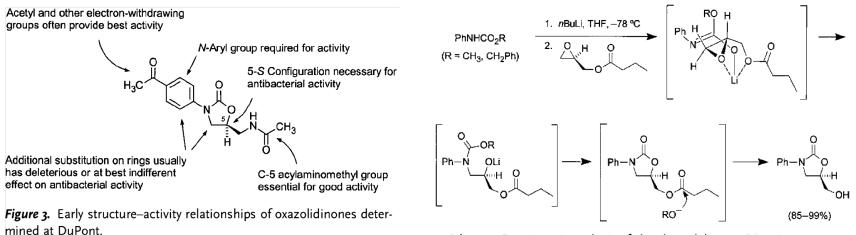
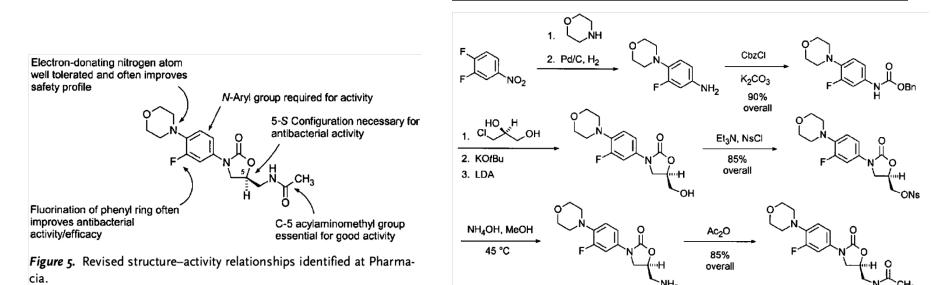
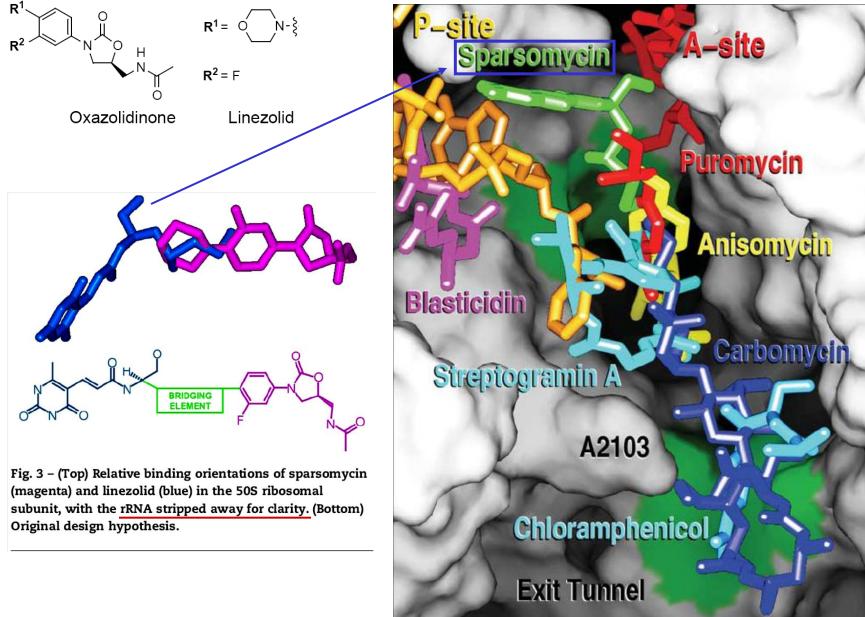


Table 3. Mear	n (+/-SD) multiple-dose pharmacokinetics
of linezolid q	 2h [2].

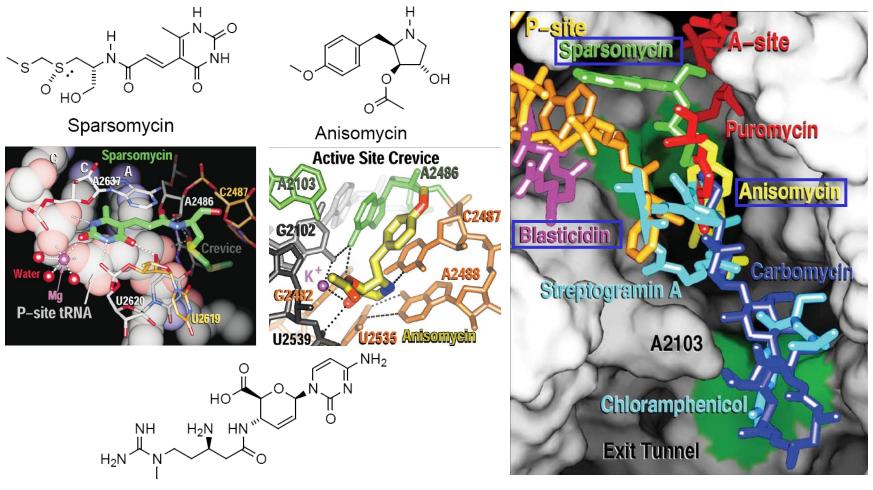

Parameter	600 mg Tablet	600 mg iv.	400 mg Tablet
C _{max} (mcg/ml)	21.2 (±5.78)	15.1 (±2.52)	11.0 (±4.37)
C _{min} (mcg/ml)	6.15 (±2.94)	3.68 (±2.36)	3.08 (±2.25)
T _{max} (h)	1.03 (±0.62)	0.51 (±0.03)	1.12 (±0.47)
AUC (mcgh/ml)	138.0 (±42.1)	89.7 (±31.0)	73.40 (±33.5)
Half-life (h)	5.40 (±2.06)	4.80 (±1.70)	4.69 (±1.70)
Clearance (ml/min)	80 (±29)	123 (±40)	110 (±49)

Organism Antibacterial agent MIC ₅₀ [µg mL ⁻¹] Staphylococcus aureus linezolid 4 (methicillin-susceptible) vancomycin 1 S. aureus linezolid 4 (methicillin-resistant) vancomycin 2
(methicillin-susceptible) vancomycin 1 S. <i>aureus</i> linezolid 4 (methicillin-resistant) vancomycin 2
S. aureus linezolid 4 (methicillin-resistant) vancomycin 2
(methicillin-resistant) vancomycin 2
Staphylococcus epidermidis linezolid 2
(methicillin-sensitive) vancomycin 2
S. epidermidis linezolid 2
(methicillin-resistant) vancomycin 2
Enterococcus faecalis linezolid 4
(methicillin-sensitive) vancomycin 2
E. faecalis (VanB) linezolid 4
vancomycin >16
vanconijem > ro
Enterococcus faecium linezolid 2
vancomycin \leq 0.5
E. faecium (VanA) linezolid 4
vancomycin >16
E. faecium (VanB) linezolid 4
vancomycin >16
Streptococcus pneumoniae linezolid 1
vancomycin ≤ 0.25
S. pneumoniae linezolid 1
(penicillin-sensitive vancomycin ≤ 0.25
or -resistant
of resistant
Streptococcus pyogenes linezolid 2
vancomycin 0.5
Haemophilus influenzae ^(b) linezolid 8
vancomycin >16
vanconiyen
Moraxella catarrhalis ^[b] linezolid 4
vancomycin >16
Gram-negative bacilli ^(c) linezolid >64
vancomycin >16
Bacteroides fragilis ^[d] linezolid ≥ 16
vancomycin >16
Clostridium spp. ^[d] linezolid 2
clindamycin 4
Peptostreptococcus spp. ^[d] linezolid 2
clindamycin 2

(Barbachyn & Ford, Angew. Chem. Int. Ed. 2003, 42, 2010)


Scheme 1. Enantiomeric synthesis of phenyloxazolidinones (Manninen reaction).

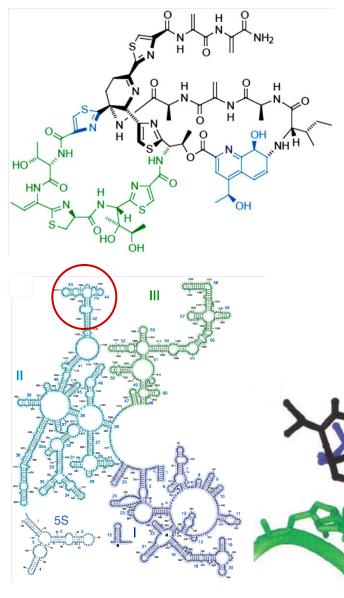
linezolid (PNU-100766)


Scheme 3. Synthesis of linezolid (PNU-100766) on a process scale. LDA = lithium diisopropylamide, Ns = *meta*-nitophenylsulphonyl.

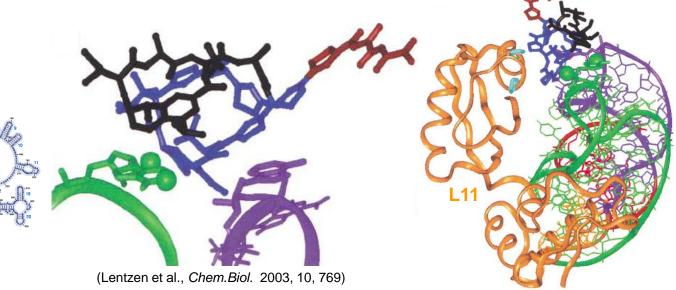
(Barbachyn & Ford, Angew. Chem. Int. Ed. 2003, 42, 2010)

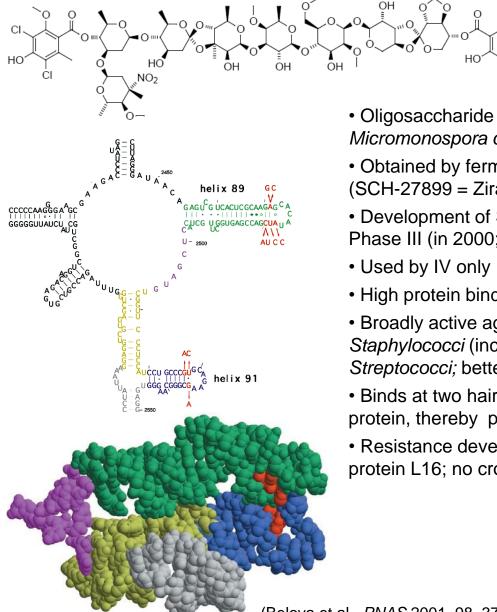
(Franceschi & Duffy, Biochem. Pharmacol. 2006, 71, 1016)

Bacterial Protein Synthesis: 50S Subunit as a Target: Other PTC-Binders


Blasticidin S

• Sparsomycin binds to the PTC in the presence of peptidyl–tRNA in the P site, which in turn is stabilized by the bound antibiotic and prevented from proceeding into the peptidyl-transfer step


• Anisomycin inhibits peptide bond formation by sterical interference with the aminoacyl-tRNA 3' acceptor


• All lack specificity for the bacterial ribosome -> not used as antibiotics

(Hansen et al., JMB 2003, 330, 1061)

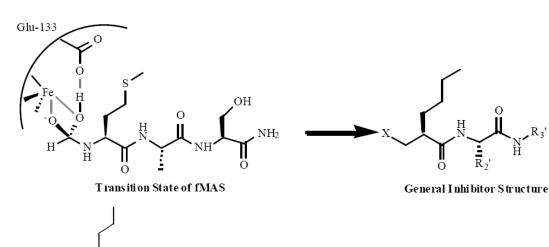
- First thiazole-peptide antibiotic isolated in 1948 from *Streptomyces* (micrococcin), followed 1954 by thiostrepton; today, ~ 29 families of antibacterial thiopeptides known
- Obtained by fermentation and semi-synthesis
- Very low water solubility and bioavailability
- Inactive against Gram- (no membrane permeability); active against resistant Gram-positives, *Staphylococci* (inc. MRSA)
- Binds at the L11 protein-binding domain of 23S rRNA, which is involved in stimulating GTPase action of elongation factors
- Binds at the interface of rRNA and L11 protein and prevents a conformational transition required for GTPase activation
- Resistance develops by complete loss of ribosomal protein L11 (cells still viable)

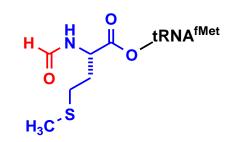
• Oligosaccharide antibiotics; first isolated 1964 from *Micromonospora carbonaceae* (everni(no)micin)

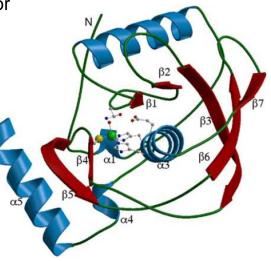
• Obtained by fermentation and semi-synthetic modification (SCH-27899 = Ziracin, Schering-Plough)

• Development of SCH-27899 voluntarily discontinued after Phase III (in 2000; toxicity? economic reasons?)

- High protein binding (96-99%); t_{1/2}=8-18h
- Broadly active against resistant Gram-positives, *Staphylococci* (inc. MRSA), *Enterococci* (inc. VRE), and *Streptococci;* better potency than vancomycin


• Binds at two hairpins (H89 & H91) of 23S rRNA and L16 protein, thereby prevents binding of initiation factor 2 (IF2)


• Resistance develops very slowly by mutation of ribosomal protein L16; no cross-resistance to any other antibiotic


(Belova et al., *PNAS* 2001, 98, 3726)

Bacterial Protein Synthesis: Peptide Deformylation: PDF Inhibitors

- In bacteria, translation initiation begins with formyl-methionine-tRNA
- Formyl group is removed co-translationally by ribosome-associated peptide deformylase (PDF)
- PDF is an iron-containing metallo hydrolase
- PDF is essential for bacteria
- Hydroxamates inhibit function of PDF by chelating the active-site Fe(II)
- Actinonin, isolated in 1960 from *Streptomyces*, is a natural PDF inhibitor (identified in 1999)
- Since 1999, numerous attempts to find improved inhibitors
- Enzyme is instable and difficult to handle

Actinonin

Bacterial Protein Synthesis: Peptide Deformylation: PDF Inhibitors

Bacterial Peptide Deformylase Inhibitors

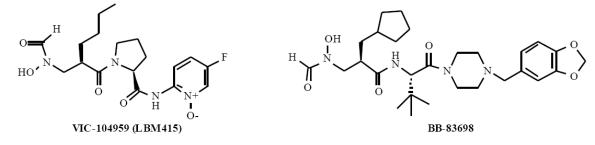

Current Medicinal Chemistry, 2005, Vol. 12, No. 14 1615

Table 3. List of Published PDF Inhibitors, Reported IC₅₀ Against *E. Coli* PDF and MIC Against Various Bacteria. Refer to Fig. 3-6 for the Corresponding Structures

	l st Author (Year first published)	IC ₅₀ (nM)	MIC (µg/ml)	Comments	
1	Hu [41] (1998)	37,000	NA	H-phosphonate: designed inhibitor based on its best substrate formyl-MA-p- nitrophenylalanine.	
2	Meinnel [42] (1999)	2,500	NA	Thiol peptide: designed based on the best substrate identified.	
3	Durand [44] (1999)	10,000	NA	Aldehyde peptide: identified through screening existing library.	
4	Chen [39] (1999)	0.3 (Ki)	8-16 ¹	Actinonin: naturally occurring PDF inhibitor	
5	Jayasekera [45] (2000)	1,000	>641	Thyropropic acid derivatives: non-peptidic PDF inhibitor.	
6	Huntington [43] (2000)	19	$\frac{10^2}{2^3}$	Thiol peptide: thiol chelating group combined with the best substrate motif.	
7	Green [46] (2000)	3900	NA	Biaryl acid: non-peptidic PDF inhibitor	
8	Apfel [36] (2000)	16	256 ¹	β-Sulfonylhydroxamic acid: identified by screening existing chemical library.	
9	Clements [34, 53, 55, 56, 58, 72] (2001)	7	4-16 ¹	N-formyl hydroxylamine with t-butylglycine at P ₂ ' site (BB3497): active <i>in vivo</i> ; P ₃ ' analog BB-83698 has better PK profile and is in clinical development. SAR explored on chelator, P ₁ ', P ₂ ', and P ₃ ' position. Patent: WO 99/39704	
10	Chu [47, 54] (2001)	30 (Ki)	32 ²	Pseudopeptide metabolites: isolated from fermentation broth of Streptomyces sp.	
11	Chen [11, 52, 73] (2000)	4-10	0.13-41	Alkyl-succinate-proline hydroxamate (VRC3375): active <i>in vivo</i> : analogs with ccflouro or cc-hydroxy substitution improve antibacterial activity >8-fold <i>in vitro</i> , and >3-fold <i>in vivo</i> . Patent: WO 01/44179	
12	Grant [74] (2001)	200,000	ND	N-substituted methionine hydrazide: identified by screening compound collection.	
13	Apfel [48] (2001)	120	16 ⁴	Quinazoline hydroxamic acid: identified by screening compound collection.	
14	Thorarensen [49] (2001)	2200	32 ¹	N-Hydroxy urea: identified by screening compound collection.	
15	Harckbarth [35] (2002)	3	0.25-1 ¹	N-alkyl urea hydroxamate: active <i>in vivo.</i> Patent: WO 01/44178	
16	Xiang, et al. (2002)	ND	ND	Carbamate N-formyl hydroxylamine: Patent only: WO 02/70653	
17	Xiang, et al. (2002)	ND	ND	Hydrazide N-formyl hydroxylamine: Patent only: WO 02/70541	
18	Xiang, et al. and Aubart, et al. (2002)	ND	ND	2-Oxo-pyrrolidine with chelators Patent only: WO 02/70654, WO02/70540	
19	Beckett, et al. (2002)	ND	4 ¹	Benzimidazole N-formyl hydroxylamine: Patent only: WO 02/41886,	
20	Bhat, et al. (2002)	ND	ND	N-Hydroxy-2-(substituted phenyl) acetamide Patent only: WO 02/081426, WO 03/002522	
21	Chong, et al. (2002)	>200	ND	Hydantoin Patent only: WO 02/28829	
22	Choi et al. (2002)	ND	ND	N-Sulfonyl-L-Val-L-Leu-hydroxamate Patent only: JP 02/322197	
23	Christensen et al. and Karpinski, et al. (2002)	ND	ND	Benzimidazole derivative Patent only: WO 02/098901, WO 03/104209	
24	Patel, et al. (2002)	ND	ND	Heteroarylaryl(P ₂ '/P ₃ ') <i>N</i> -formyl hydroxylamine Patent only: WO 02/102790	
25	Patel, et al. (2002)	ND	ND	Pyrrolidine bicyclic (P2 '/P3 ')compounds Patent only: WO 02/102791	
26	Hu [59] (2003)	7	~12 ²	Cyclization of the P1' and P3' side chain	
27	Gane, et al. (2003)	ND	ND	Urea analogs (P2'/P3') of N-formyl hydroxylamine Patent only: WO 03/048115	
28	Takayama [75] (2003)	1040	10 ¹	Benzothiazolylidene hydroxamic acid derivatives	
29	Aubart, et al. (2003)	ND	ND	N-Hydroxy-N-(3-hydrazino-3-oxopropyl)formamide Patent only: WO 03/101442	
30	Molteni [50] (2004)	5	8-128	Benzothiazinone derivatives	
31	Howard [51] (2004)	1660	ND	2-Thioxo-4-thiazolidinone N-hexanoic acid	
32	Cali [10] (2004)	3400	>128	Isoxazole-3-hydroxamic acid derivatives	

In the table, NA=Not active; ND=No data; MICs against various organisms: 1=S. aureus; 2=E. coli; 3= B. subtilis; 4=H. influenzae. Activities for in vivo active compounds are in bold.

Bacterial Protein Synthesis: Peptide Deformylation: PDF Inhibitors

Structures of two PDF inhibitors, VIC-104959 (LBM415) and BB-83696, that went into human Phase I clinical trials.

Organism	n	VIC-104959 ^a	n	BB-83698 ^b
S. aureus	56	2	30	4
S. pneumoniae	43	1	36	0.25
H. influenzae	33	4	50	16
M. catarrhalis	22	0.5	29	0.06
E. faecalis	23	8		
E. faecium	31	4		
H. pylori	19	0.5		
Mycoplasma	5	0.002-0.015		
Anaerobes (G-)	13	0.5		
Anaerobes (G+)	6	>128		
Enterobacteriaceae	80	>128		

Table 5. MIC₉₀ (µg/mL) of VIC-104959 (LBM415) and BB-83698 Against Key Pathogens (see Fig. 7 for Structures)