Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2008 Lecture 7: Antibiotics Classes & Targets Part II: Drugs Targeting Fatty Acid and Folic Acid Biosynthesis, **Cell Division Thomas Hermann Department of Chemistry & Biochemistry** University of California, San Diego **Antibacterial Targets: Overview Protein Synthesis Inhibition Cell Wall Synthesis Inhibition** β-lactams Aminoglycosides Macrolides Glycopeptides Tetracyclines Oxazolidinones Daptomycin Streptogramins Tunicamycin Lincosamides Bacitracin 305 50S 508 RNA -dTMP___ DNA 🗶 GTP-DHP DHP dUMP THF Sulfamethoxazole Trimethoprin Quinolones Rifampin Novobiocin Metabolism Inhibition

DNA Synthesis Inhibition

RNA Synthesis Inhibition

Bacterial Fatty Acid Biosynthesis: Fabl Inhibitors

Bacterial Fatty Acid Biosynthesis: FabB Inhibitors

Thiolactomycin

(isolated from fungus *Nocardia sp.*; efficacious against G+/- in mouse models)

Cerulenin

Bacterial Fatty Acid Biosynthesis: FabA Inhibitors: Decynoyl-NAC

Historical importance: First example of a suicide enzyme inhibitor (Helmkamp et al., JBC 1969, 244, 6014)

Bacterial Fatty Acid Biosynthesis: FabF Inhibitors: Platensimycin

nature

Vol 441|18 May 2006|doi:10.1038/nature04784

LETTERS

Platensimycin is a selective FabF inhibitor with potent antibiotic properties

Jun Wang^{1*}, Stephen M. Soisson^{1*}, Katherine Young¹, Wesley Shoop¹†, Srinivas Kodali¹, Andrew Galgoci¹, Ronald Painter¹, Gopalakrishnan Parthasarathy¹, Yui S. Tang¹, Richard Cummings¹, Sookhee Ha¹, Karen Dorso¹, Mary Motyl¹, Hiranthi Jayasuriya¹, John Ondeyka¹, Kithsiri Herath¹, Chaowei Zhang¹, Lorraine Hernandez¹, John Allocco¹, Ángela Basilio¹, José R. Tormo¹, Olga Genilloud¹, Francisca Vicente¹, Fernando Pelaez¹, Lawrence Colwell¹, Sang Ho Lee¹, Bruce Michael¹, Thomas Felcetto¹, Charles Gill¹, Lynn L. Silver¹†, Jeffery D. Hermes¹, Ken Bartizal¹, John Barrett¹‡, Dennis Schmatz¹, Joseph W. Becker¹, Doris Cully¹ & Sheo B. Singh¹

Bacterial Fatty Acid Biosynthesis: FabF Inhibitors: Platensimycin

Figure 1| Characterization of platensimycin. a, Structure of platensimycin. b, *In vivo* studies on platensimycin. Dosing at $50 \,\mu g \,h^{-1}$ showed small decrease in viable *S. aureus* cells from the infected kidney. However, a $10^4 - 10^5$ fold decrease (4 and 5 log reduction) were achieved with 100 and $150 \,\mu g \,h^{-1}$, respectively. Dosing at $150 \,\mu g \,h^{-1}$ showed 20% of the kidneys with no viable *S. aureus*, whereas dosing at $100 \,\mu g \,h^{-1}$ showed 20% of the kidneys with out detectable viable *S. aureus*. Error bars indicate s.d. observed with five infected mice. The results were confirmed by a repeat experiment.

c, Whole-cell labelling assay¹⁶ with platensimycin. The assay was performed with a serial dilution of platensimycin, starting at 500 μ g ml⁻¹. Platensimycin showed no significant inhibition against syntheses of DNA (open circles), cell wall (filled triangles), protein (open squares) and RNA (open triangles) but greatly inhibited phospholipid synthesis (filled circles), providing an IC₅₀ value of 0.1 μ g ml⁻¹. Error bars indicate s.d. for three individual experiments. **d**, Direct binding assay results of [³H]dihydroplatensimycin and *E. coli* FabF (ecfabF) in the presence and absence of n-dodecanoyl coenzyme A (lauroyl-CoA; C₁₂-CoA) and the C163Q mutant protein. Error bars indicate s.d. observed with six replicate

Bacterial Fatty Acid Biosynthesis: FabF Inhibitors

Systematic screening of 250,000 natural product extracts (83,000 strains in three growth conditions), with the use of a combination of target-based whole-cell and biochemical assays, led to the identification of a potent and selective small molecule from a strain of Streptomyces platensis recovered from a soil sample collected in South Africa. This molecule, platensimycin (C24H27NO7, relative molecular mass 441.47), comprises two distinct structural elements connected by an amide bond (Fig. 1a).

Table 1 | Microbiological profiles and toxicity of platensimycin and linezolid

Organism and genotype	Platensimycin	Linezolid			
Antibacterial activity (MIC, μg ml ⁻¹)*					
S. aureus (MSSA)	0.5	4			
S. aureus + serum	2	4			
S. aureus (MRSA)	0.5	2			
S. aureus (MRSA, macrolide ^R)	0.5	2			
S. aureus (MRSA, linezolid ^R)	1	32			
S. aureus (VISA, vancomycin ¹)	0.5	2			
Enterococcus faecalis (macrolide ^R)	1	1			
Enterococcus faecium (VRE)	0.1	2			
S. pneumoniae†	1	1			
E. coli (wild-type)	>64	>64			
E. coli (tolC)	16	32			
Toxicity ($\mu g m l^{-1}$)					
HeLa MTT (ICso)	>1.000	>100			
Candida albicans (MIC)	>64	>64			

*A concentration of 1 µg ml⁻¹ equals 2.27 µM for platensimycin and 2.96 µM for linezolid. †Cells were inoculated at 10[°] colony-forming units followed by incubation overnight at 37 °C with a serial dilution of compounds in Todd-Hewit broth. Linezolid is a synthetically derived agent that has been in clinical use since 2000. MRSA, methicillin-resistant 5. *aureus*. MSSA, methicillin-susceptible 5. *aureus*; MTT, 3-(4,5-dimethylthized)-2-yl)-2-5-dihemyl-2H-tetrazolium bromide; VISA, vancomycin-intermediate S. *aureus*; VRE, vancomycin-resistant *Enterococcus*.

Figure 2 | Interactions of platensimycin with ecFabF(C163Q) and comparison with the apo structure. a, Superposition of platensimycin (yellow, thicker sticks) on ecFabF, with thiolactomycin (green) and cerulenin (cyan) shown for reference. Side chains discussed in the text are labelled and The 2.6-Å structure of ecFabF(C163Q) in complex with platensi-

mycin shows that the antibiotic binds in the malonyl subsite of FabF (Fig. 2a), with its benzoic acid ring in roughly the same orientation as

Bacterial Fatty Acid Biosynthesis: FabF Inhibitors

🥹 platensimycin - Google Search - Mozilla Firefox 🛛	🔳 🗖 🔜
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	÷
🔶 • 🧼 - 🎯 💿 🏠 🖸 http://www.google.co	om/search?hl=en&q=platensimycin&btnG= 🔽 💽 Go 🔀
📔 Microsoft Outlook W 🐄 Login - SBC Yahoo! 📄 Departr	ment of Che 🜀 Google
Google Web Images Groups News	s Froogle Maps Scholar more.» Advanced Search Preferences
Web	
Antibiotics discovery www.nature.com/nature May 18th Nature Podcast. Discovery	v of new antibiotics. Listen for free
Suggestions: • Make sure all words are spelled correctly. • Try different keywords.	Date and Time Properties
Try more general keywords.	
<u>Google Home</u> - <u>Advertisin</u> c	S M T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9:59:18 AM \$
	Current time zone: Pacific Standard Time

Bacterial Fatty Acid Biosynthesis: FabF Inhibitors

-	C bttp://www.google.co	om/search?hl=en&g=platensimycin&htr V N Google	
	tiook we 🌠 Login - SBC Yanoo! 📋 Depari	rment or Chemi 🕒 Google Sian in 🧖	
~	Web Images Video News	Maps more »	
Goo		Search Advanced Search Preferences	
	0		
Web		Results 1 - 10 of about 27,400 for platensimycin. (0.22 seconds)	
Platensimy Platensimycin	cin - Wikipedia, the free encyclopedia is an experimental new drug being trialed in an ef	ffort to combat MRSA. [1]	
Manufactured by en.wikipedia.org	/ a strain of Streptomyces platensis, it represents Aviki/ Platensimycin - 17k - <u>Cached</u> - <u>Similar pag</u>	S a	
Platensimy	in is a selective FabF inhibitor with po	otent antibiotic	
Here we report t produced by Str	he discovery of platensimycin , a previously peptomyces platensis. Platensimycin demonst	Date and Time Properties	
www.nature.co	m/nature/journal/v441/n7091/abs/nature04784.	Date & Time Time Zone Internet Time	
<u>New Antibiot</u> Platensimycin	c Eliminates Superbugs: Scientific A isolated from a strain of Streptomyces platens	_Date	
of those tests, p www.sciam.com	latensimycin could be the third new n/article.cfm?articleID=0002E37D-944D-146B-9	May 2007 🗘 · · ·	
Cached - Similar	pages otio com u Diog Archivos u Distono i	S M T W T F S	
BTW, one of the	authors comes to my unito speak about plate		
totallysynthetic.c	« Chemist in A Transition State Says: com/blog/?p=272 - 41k - <u>Cached</u> - <u>Similar pages</u>	13 14 15 16 17 18 19 20 21 22 23 24 25 26	
<u>Totally</u>	Synthetic.com » Blog Archives » Pla	27 28 29 30 31	
could pos	sibly need is explained and discussed at the	10:45:51 AM	
[More re	sults from totallysynthetic.com]	Current time zone: Pacific Daylight Time	
Platancimu	in I Science Buzz		
	Acid Piccunthosis		
rial Folic	Acid Biosynthesis		
rial Folic	Acid Biosynthesis		
ial Folic	Acid Biosynthesis	Methylation of dLIMP	
ial Folic	Acid Biosynthesis	Methylation of dUMP	synthesi
	Acid Biosynthesis	Methylation of dUMP Purine/pyrimidine bios	synthesi
rial Folic	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis	synthesi
ial Folic	Acid Biosynthesis	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis	synthesis ase
ial Folic	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesis
rial Folic	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesi ase s nesis
rial Folic	Acid Biosynthesis	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesis ase nesis
'ial Folic	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesis ase ase s nesis
rial Folic	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesis ase s nesis
<u>'ial Folic</u> ↓	GTP	Methylation of dUMP Purine/pyrimidine bios Met-tRNA transformyla Met and Gly synthesis Pantothenate biosynth	synthesis ase hesis

Bacterial Folic Acid Biosynthesis

Methylation of dUMP Purine/pyrimidine biosynthesis Met-tRNA transformylase Met and Gly synthesis Pantothenate biosynthesis

Bacterial Folic Acid Biosynthesis

Methylation of dUMP Purine/pyrimidine biosynthesis Met-tRNA transformylase Met and Gly synthesis Pantothenate biosynthesis

Bacterial Folic Acid Biosynthesis

Bacterial Folic Acid Biosynthesis: Inhibitors

Bacterial Folic Acid Biosynthesis: Sulfamethoxazole

H₂N CH-

Sulfamethoxazole inhibits bacterial synthesis of dihydrofolic acid by competing with *para* aminobenzoic acid (PABA) at the 7,8-dihydropteroate synthase (DHPS).

• DHPS is unique to bacteria, not found in mammalian cells

(Babaoglu et al., Structure 2004, 12, 1705)

First Antibiotics: Domagk Discovers Sulfonamides ("Sulfa-Drugs")

Gerhard J. P. Domagk (Wuppertal, 1895-1964)

Worked at Bayer (IG Farben) where he discovered and developed sulfonamides (Prontosil), the first drugs effective against bacterial infections.

Nobel Price in Medicine 1939 for discovery of sulfonamides.

Prontosil (red azo dye) (Bayer 1935) Sulfanilamide (1936)

Prontosil is a prodrug that is not active *in vitro*. Cleavage in the gastrointestinal tract leads to the active compound sulfanilamide which is competes with *p*-aminobenzoic acid, the substrate of dihydropteroate synthetase in the bacterial synthetic pathway to folic acid.

Bacterial Folic Acid Biosynthesis: Trimethoprim

Bacterial Folic Acid Biosynthesis: Iclaprim

20 60

Iclaprim (sc) Trimethoprim (sc)

Iclaprim

- currently in Phase III testing
- active against trimethoprim-
- resistant *S. aureus* (Phe98->Tyr98) *S. pneumoniae* (lung infection)

(Hawser et al., Biochem. Pharmacol. 2006, 71, 941)

Antibacterial Targets: Overview

Bacterial Cell Division: FtsZ Polymerization Inhibitors

Viriditoxin from Aspergillus sp. fermentation broth.

Discovered in high-throughput screen of >100,000 microbial and plant extracts at Merck & Co.

(Jennings et al., JBC 2003, 278, 44424)

PC58538 PC170942 HO HO

FtsZ inhibitors discovered in high-throughput screen of ~100,000 synthetic compounds at Prolysis, Ltd. (UK)

(Stokes et al., JBC 2005, 280, 39709)

Control

Bacterial Cell Division: Inhibitors of FtsZ – ZipA Interaction

OH

ZipA-binding inhibitors of FtsZ-ZipA interaction discovered in highthroughput screen of >250,000 synthetic compounds at Wyeth.

Hydrophobic binding region of FtsZ on ZipA

Cell division process is difficult to target:

Most potential targets are protein-protein interactions, which are difficult to inhibit with small molecules.

(But:

Related proteins of the eukaryotic cytoskeleton are validated targets of cytotoxic agents.)

(Jennings et al., BMCL 2004, 14, 1427)