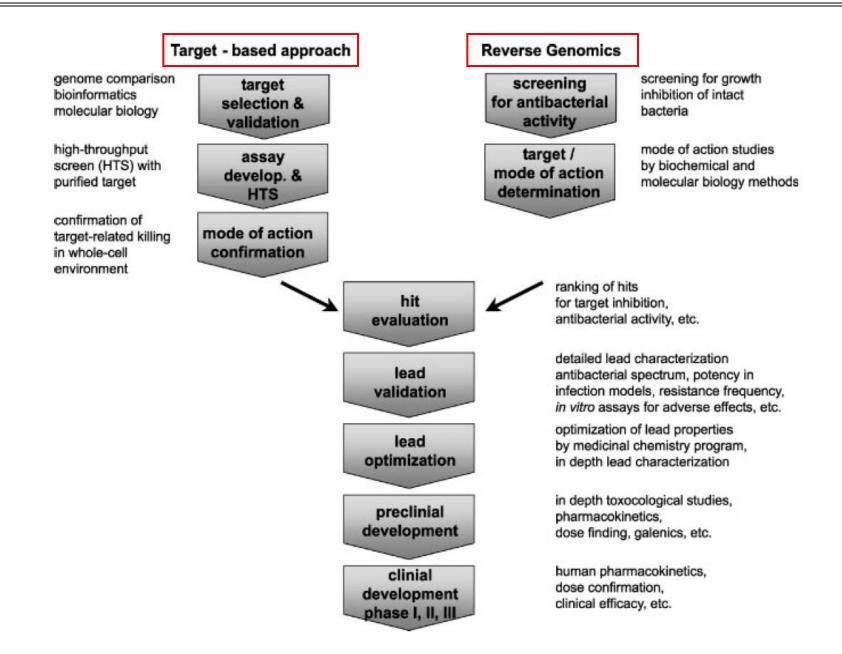
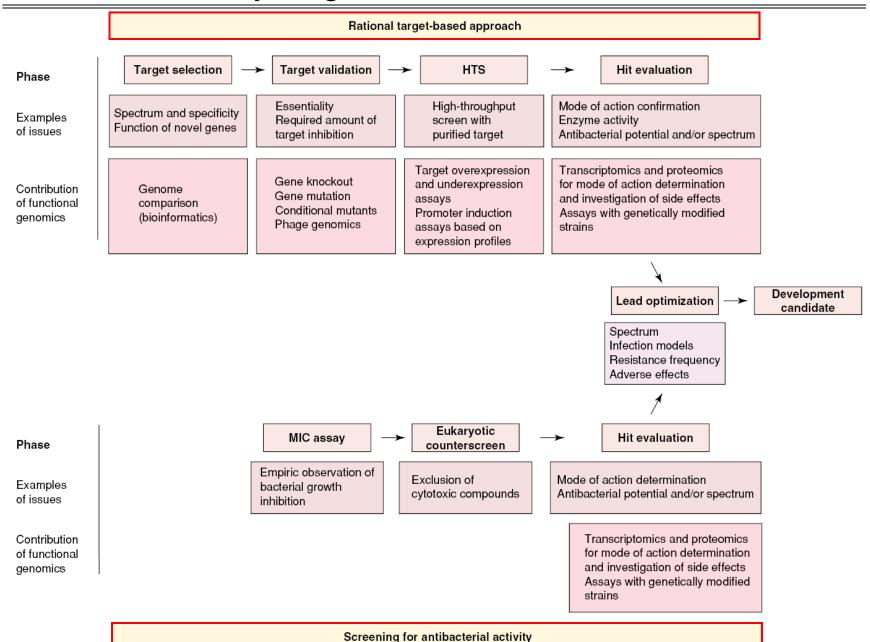
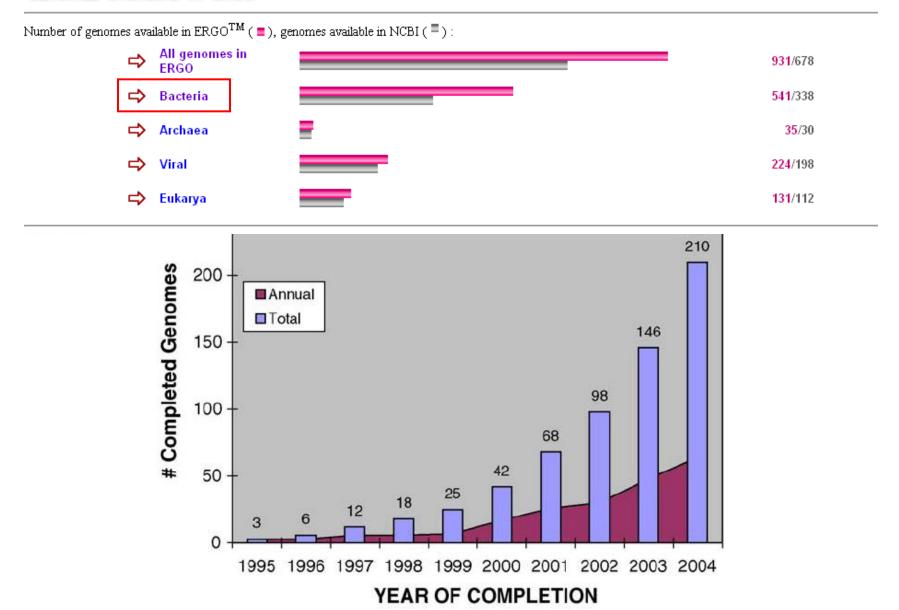

Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2012



Lecture 5: Modern Target Discovery & MOA

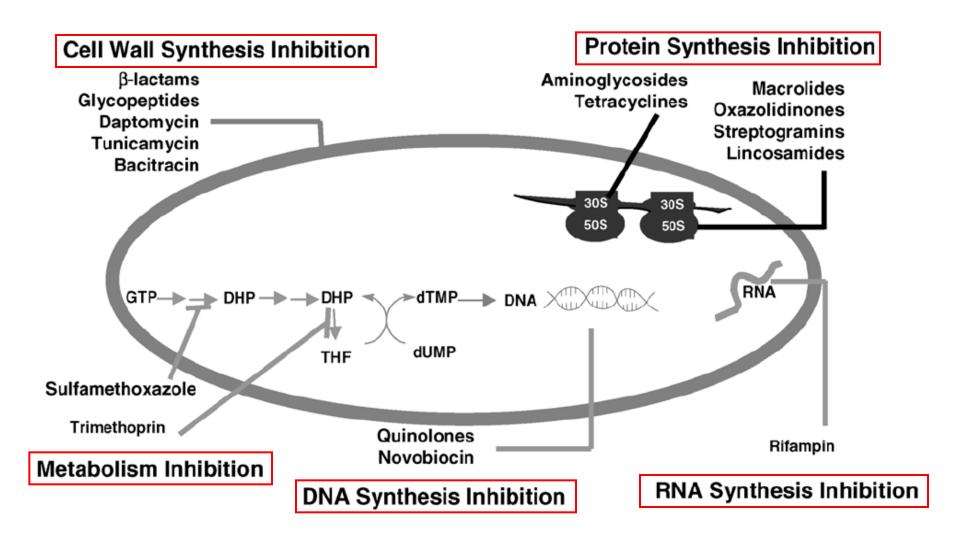

Thomas Hermann

Department of Chemistry & Biochemistry University of California, San Diego



Antibacterial Discovery: Target-Based & Reverse Genomics

Basis for "Omics Approaches": Sequenced Genomes


Genomes available in ERGO™

Number of potential essential genes identified in genome-wide gene inactivation studies				
Organism	Total no. of genes	No. of (potentially) essential genes ^a	Method	Refs
Bacillus subtilis	4101	271	Plasmid insertion mutagenesis Conditional mutants Estimations derived from literature study	[20]
Escherichia coli	4279	620	Transposon mutagenesis	[16]
Haemophilus influenzae	1709	256	Transposon mutagenesis	[19]
Helicobacte r pylori	1552	344	Transposon mutagenesis	[17]
Mycoplasma genitalium	484	256–350	Transposon mutagenesis	[14]
Staphylococcus aureus	2595	150–658	Antisense RNA expression	[<mark>26,</mark> 27]
Streptococcus pneumoniae	2043	113 out of 347 examined genes	Plasmid insertion mutagenesis	[21]

^aFor most species, the conclusion that genes might be essential has been drawn because gene inactivation was not achieved. Therefore, the genes need to be regarded as being potentially essential. Validation of essentiality will reduce the number of essential genes. The essentiality of genes has been studied *in vitro* in complex medium. Genes validated this way are also considered to be probably indispensable *in vivo*. The best-validated essentiality study has been performed in *B. subtilis* and, in this case, the number of essential genes seems to be realistic.

Table 1 – Desirable properties of a good antibacterial target					
Target property	Why desirable	Alternative			
Essential Present in multiple bacterial species	Inhibition leads to bacterial stasis or death Potential for broad-spectrum inhibitor of bacterial growth	Inhibition of virulence may also be effective A narrower spectrum may also be desired			
Selectivity	Greater selectivity for bacterial target may result in less toxicity in humans	Effective drugs are in use against targets with significant homology to human equivalents			
Bactericidal	Killing bacteria is optimal	There are several effective bacteriostatic drugs on the market			
In vitro functional assay	Enzymatic assay could aid drug discovery	There are alternative methods to discover inhibitors			

Number of bacterial targets present in important Gram-positive and
both Gram-positive and Gram-negative pathogens [*]

Functional category of gene product	No. of targets in Gram- positive pathogens	No. of targets in Gram- positive and Gram- negative pathogens
Cell division	12	9
Nucleotide biosynthesis	12	10
Coenzyme biosynthesis	10	7
Fatty acid biosynthesis	14	14
Translation	71	68
Transcription	9	8
Replication	26	25
Cell wall biosynthesis	19	16
Others	10	10
Total number	183	167

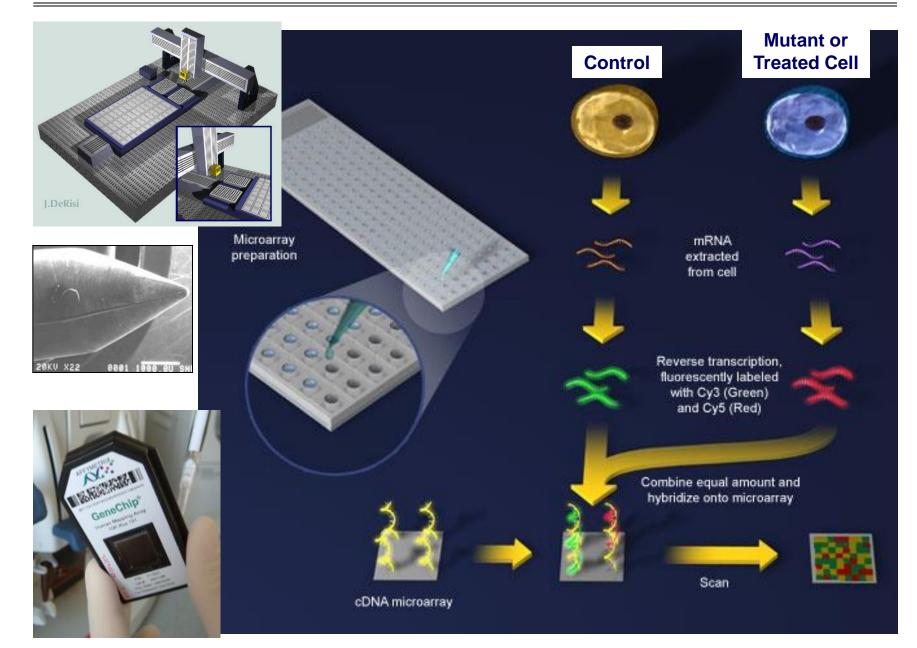
Target Discovery: Determination of Target Gene Essentiality

Method	Bacterial species	Reference
Random mutagenesis		
Plasmid insertion	S. pneumoniae	[11]
Conditional lethals	E. coli,	[12,13]
	S. typhimurium	
Transposon	E. coli, H. pylori, M. genitalium	[14–16]
Shotgun antisense	S. aureus	[17]
Cassette mutagenesis	H. influenzae	[18]
Targeted gene disruption		
Plasmid insertion	E. coli,	[19,20]
	S. pneumoniae	
Allelic exchange	H. pylori	[21]
Crossover PCR	E. coli	[22]
Targeted conditional	E. coli, S. aureus	[12,23]
lethals		
In vivo virulence		
Signature-tagged mutagenesis	S. typhimurium	[24]
In vivo expression technology	S. typhimurium	[25]
Differential fluorescence induction	S. typhimurium	[26]

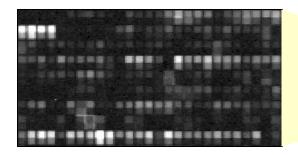
Target Discovery: Transcriptome & Proteome Profiling

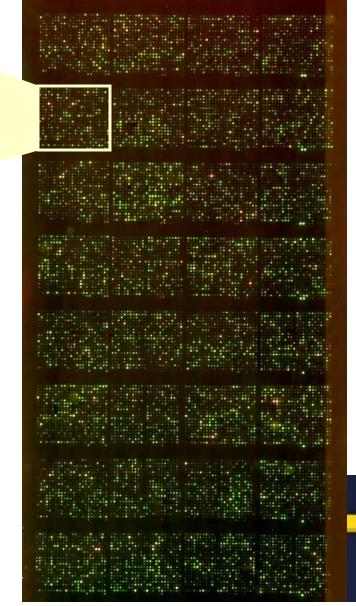
DNA \rightarrow	mRNA	\rightarrow	Protein
Genome	Transcriptome		Proteome
(= all genes)	(= all mRNAs)		(= all proteins)

Technical advantages and restrictions of transcriptome and proteome expression profiling.

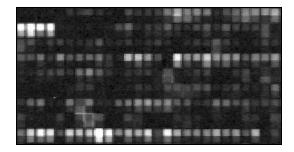

	Transcriptome	Proteome
Information content	Information on mRNA but not on protein level mRNA expression profiling on a whole genome basis possible.	Information on protein amount, synthesis rates, protein modification, protein degradation. Up to now only a subset of the proteome visualized by proteomics.
Technical demands	Position of genes fixed and known.	Gel to gel variation of protein position, protein identification required, multiple proteins per spot and spots per protein possible.
	Virtually all genes covered by a single chip for parallel analysis.	Only protein subsets detected on a single gel, basic proteins and membrane proteins require special separation conditions.
Costs per sample	Hardware costs higher than in case of 2D-gel electrophoresis.	Hardware costs lower, however preparation of gels for various sub-proteomes more labor-intensive.

(Freiberg et al., Drug Discov. Today 2005, 10, 927)

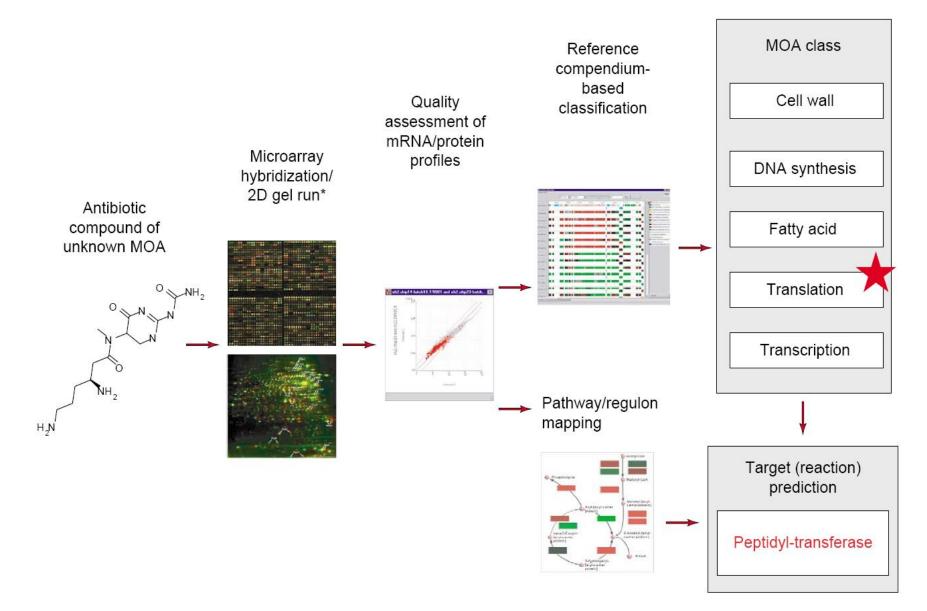

Essentiality of a target (study knockout mutant vs. wildtype) Impact/mechanism of action (MOA) of a compound/antibiotic


Transcriptome expression profiling? \rightarrow

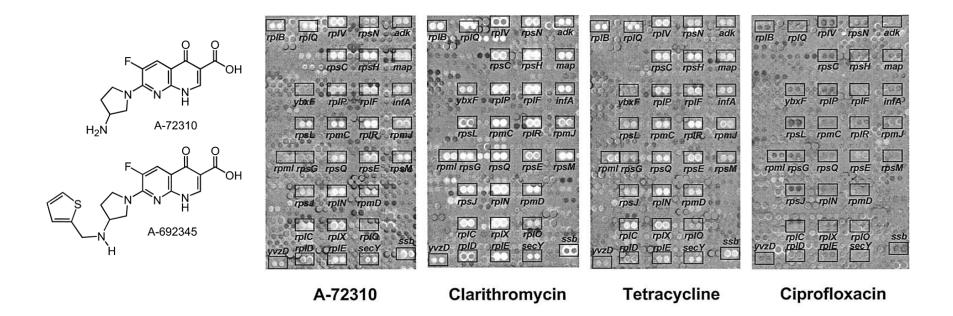
Target Discovery: Microarray Expression Profiling



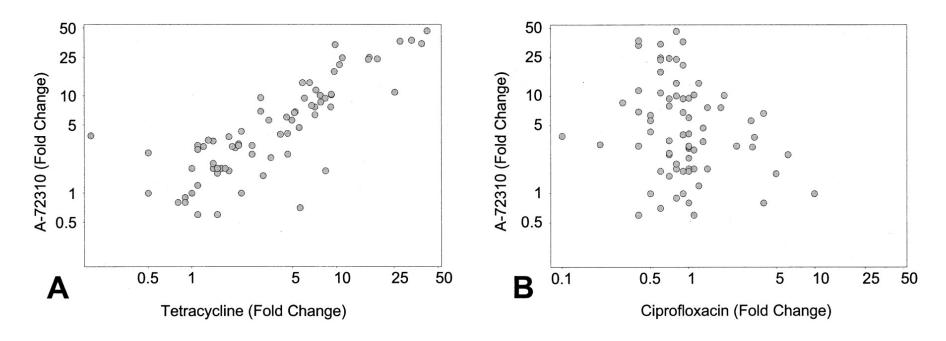
Target Discovery: Microarray Expression Profiling

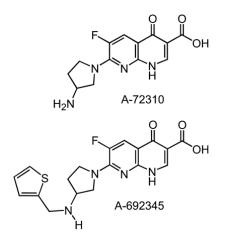


Groups of gene-expression responses to antibiotic treatment

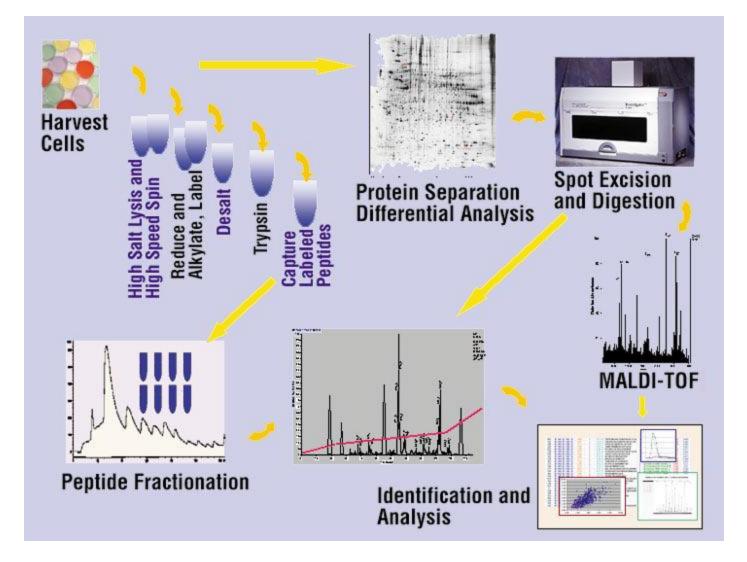

Gene-expression response group	Group characteristics and examples			
1. Direct effects	Characteristic signatures of primary target inhibition, complicated by secondary effects (e.g. antibiotics targeting DNA replication machinery cause DNA damage and elicit SOS DNA-repair response; antibiotics targeting RNA synthesis inhibit transcription and elicit changes in tRNAs and nucleotides, for example).			
2. Indirect effects	Triggered when primary target is inhibited, as organism attempts to compensate for changes in its environment (e.g. general stress responses, metabolic changes and resistance mechanisms).			
3. Secondary effects	Downstream effects of target inhibition that have no particular role in antibiotic action and thus do not impact on the fate of antibiotic-treated bacteria.			
4. Bystander effects	Changes in organism- or antibiotic-specific genes, or in generally unrelated genes.			

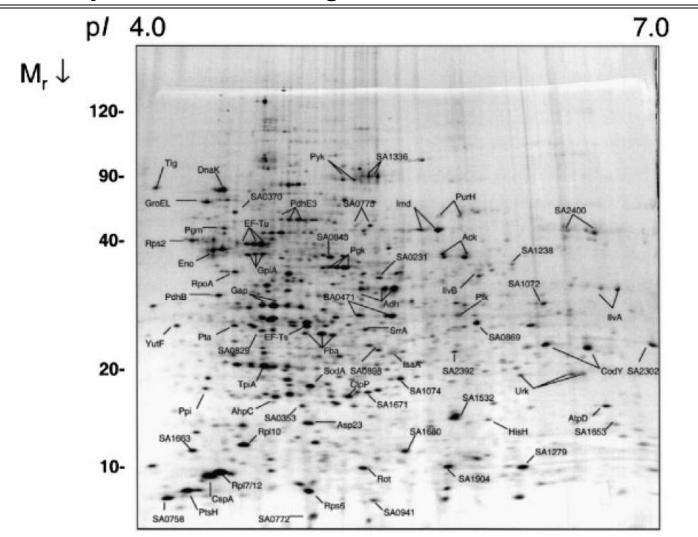
Target Discovery: Transcriptome & Proteome Profiling - MOA


(Freiberg et al., Curr. Opin. Microbiol. 2004, 7, 451)


Target Discovery: Transcriptome Profiling – MOA Example

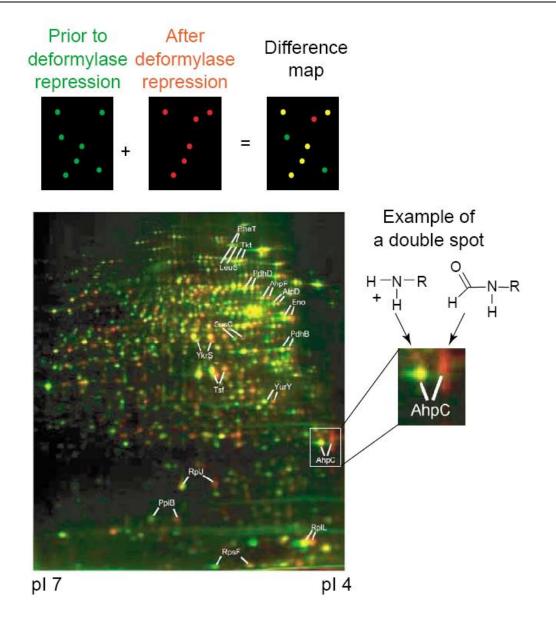
Composite *B. subtilis* gene expression array images for A-72310 (128 μ g/ml), clarithromycin (10 μ g/ml), tetracycline (0.1 μ g/ml), and ciprofloxacin (0.1 μ g/ml). Drug-induced changes in mRNA concentration are indicated by either light (upregulated), dark (downregulated), or neutral gray (unchanged) spots (in duplicate).


Target Discovery: Transcriptome Profiling – MOA Example



Scatter plots of the fold change in *B. subtilis* mRNA levels induced by A-72310 and tetracycline (A) and A-72310 and ciprofloxacin (B).

(Dandliker et al., Antimicrob. Ag. Chemother. 2003, 47, 3831)



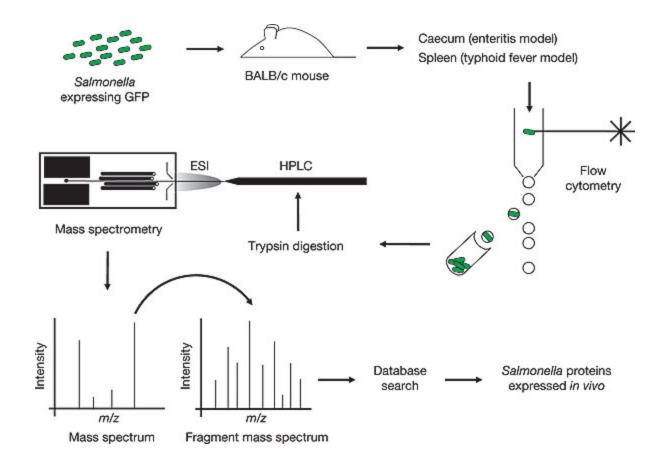
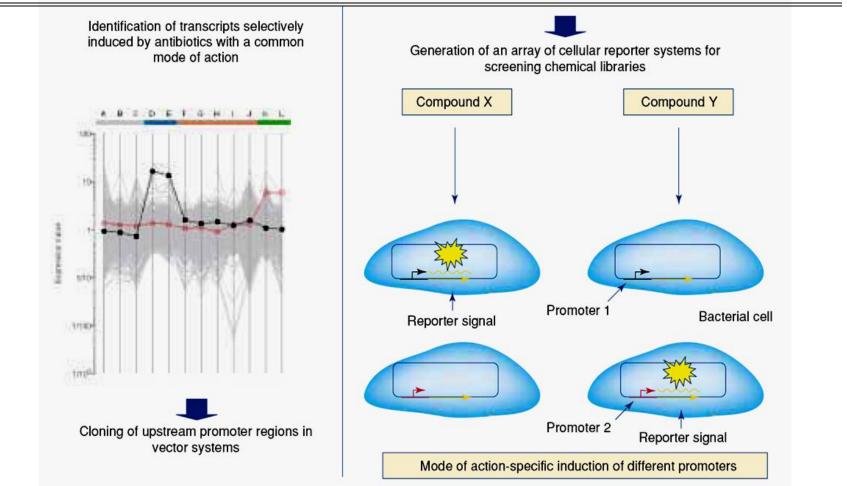

Target Discovery: Proteome Profiling - MOA

FIGURE 1. Example of a protein reference map. The proteome of *Staphylococcus aureus* 8325 was separated by 2D-gel electrophoresis, using an immobilized pH gradient in the range of pI 4–7. Proteins were stained with silver, and were identified by MALDI-MS after tryptic digestion. The identity of selected proteins that serve as landmarks on the gel are indicated. Reproduced from Hecker, Engelmann, & Cordwell (2003), with permission from Elsevier, copyright 2003.

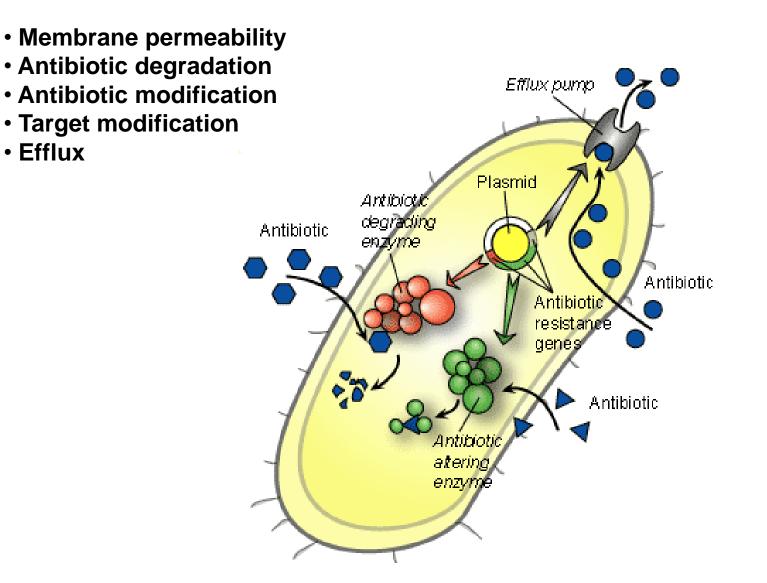

Target Discovery: Proteome Profiling – MOA Example

Mice were infected with *Salmonella* expressing GFP. After several days, fluorescent GFP-expressing *Salmonella* were purified from spleen or caecum homogenates by flow cytometry. Purified *Salmonella* were digested with trypsin and the resulting peptide mixtures were separated by high-performance liquid chromatography (HPLC). Electrospray ionization (ESI) tandem mass spectrometry of the eluted peptides yielded peptide mass spectra and fragment ion mass spectra. Comparison with databases identified the respective *Salmonella* proteins.

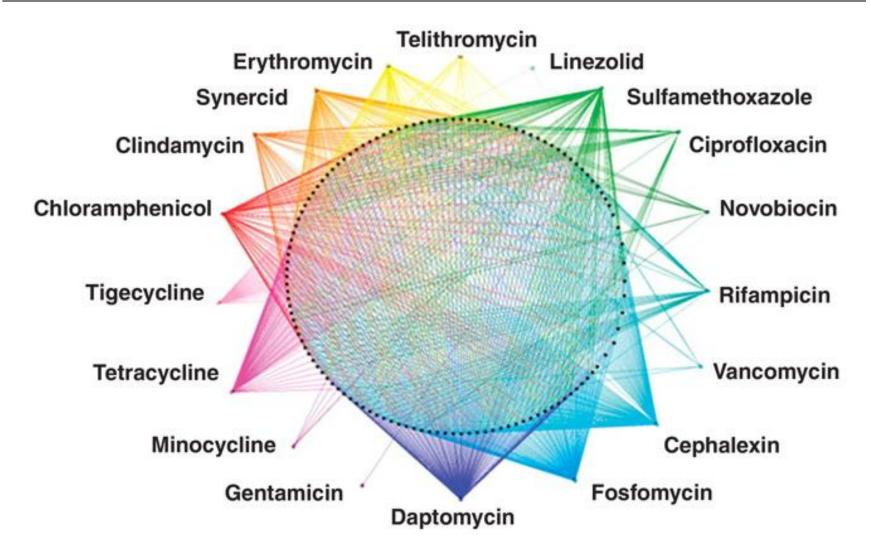
Target Discovery: Validation by Promoter Induction

Promoter induction assays based on expression profiling. Transcriptional expression profiles of all genes of a bacterial genome are represented by gray lines. In the presence of several different antibiotics (A–L with color-coded MOA), genes selectively responding to a specific type of growth inhibition can be identified. For example, one transcript is only induced by treatment with compounds D and E (black line), whereas another transcript is selectively induced by compounds K and L (red line). Upstream regions of the corresponding genes are cloned in front of reporter genes, enabling the detection of compounds with MOAs similar to D and E or K and L, respectively. Arrays of promoter induction systems represent helpful tools for the discovery of novel drug candidates.

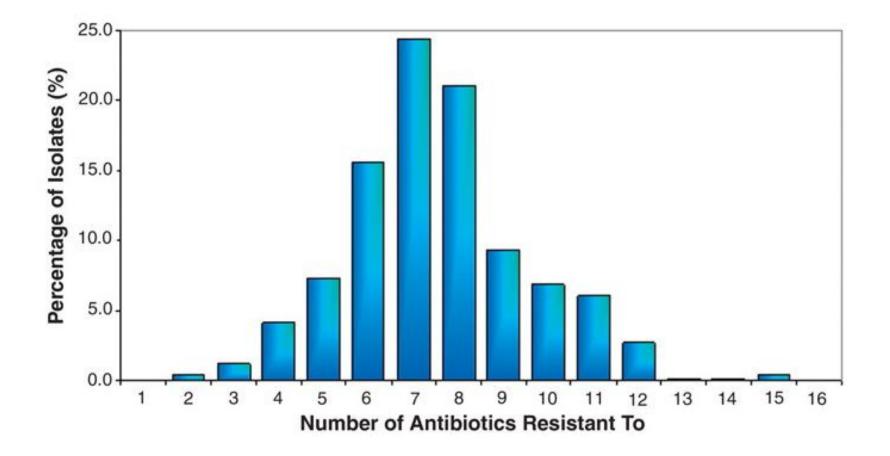
(Freiberg et al., Drug Discov. Today 2005, 10, 927)


Antibacterial Discovery: Results of Target Screening

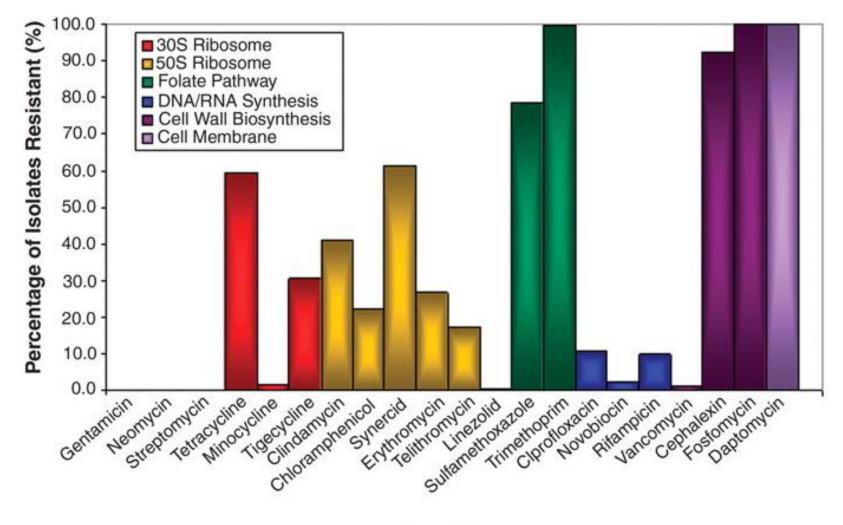
Pathway	Target protein	Function		Outcome
Peptidoglycan synthesis Cell Wall Synthesis Inhibition β-lactams Characteris	Multiple	Whole pathway	[74]	MurA inhibitors found with very weak antibacterial activity (S. <i>aureus</i> MIC 16 µg/ml). Whole cell assay
Glycopeptides Daptomycin Tunicamycin Bacitracin	MurA	UPD-N-acetylglucosamine enolpyruvil-transferase	[75]	Enzyme inhibitors with weak antibacterial activity (S. aureus MIC 4 µg/ml)
			[76]	Enzyme inhibitors found without reported antibacterial activity
	MurC	UDP-N-acetylmuramyl- _L -ala ligase	[77]	Enzyme inhibitors found without reported antibacterial activity
	MurG	Nucleoside diphospho-glycosyltransferase	[78]	Enzyme inhibitors found without reported antibacterial activity
	MraY	Transferase ^a	[79]	Description of methodology, no hits reported
	PBP1b	Transglycosylase/transpeptidase	[80]	Description of methodology, no hits reported


Pathway	Target protein	Function		Outcome
Protein synthesis	Phe-RS	Phenylalanyl-tRNA synthetase	[81]	Enzyme inhibitors found with in vitro and in vivo antibacterial activity antagonized by phenylalanine
	Pdf1	Peptide deformylase	[82]	Screening of focused libraries identified a lead with in vitro and modest in vivo antibacterial activity
	Multiple	Transcription-translation	[83]	Cell-free transcription–translation assay in S. <i>aureus</i> Description of methodology, no hits reported
	Multiple	Transcription-translation	[84]	Cell-free transcription-translation assay in S. pneumoniae. Hits found with weak antibacterial activity, slightly improved by medicinal chemistry
Protein Synthesis I	Multiple ^b	Ribosome assembly	[85]	Description of methodology. Piloted with a focused library of aminoglycosides derivatives
Aminoglycosides Mac Tetracyclines Oxazolic Streptog	rolides linones			

Pathway	Target protein	Function		Outcome
Fatty acid synthesis	FabI	Enoyl-ACP-reductase	[26]	Enzyme inhibitors found in primary screening without antibacterial activity. Medicinal chemistry produced compounds with potent activity against S. <i>aureus</i> and in vivo activity in a rat model, though limited spectrum (substrate of efflux pumps)
	Multiple ^c	Most of the type II fatty acid synthesis pathway	[25]	Enzyme inhibitors with weak antibacterial activity identified from a natural products library
Others	FtsZ	Tubulin-like protein involved in septum formation	[86]	Description of methodology, no hits reported
	spsB	Signal peptidase I	[87]	Enzyme inhibitors with weak antibacterial activity identified from a natural products library


Target Discovery: Antibiotic Resistance Mechanisms

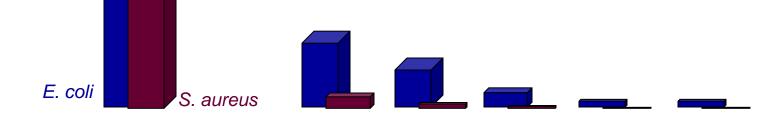
Target Discovery: Resistance Profiling ("Resistome")



Density and diversity of resistance profiles in 480 soil-derived bacterial isolates.

Resistance spectrum in 480 soil-derived bacterial isolates.

Target Discovery: Resistance Profiling


Antibiotic

Resistance levels and MOA in 480 soil-derived bacterial isolates.

Antibacterial Discovery: Structural Genomics

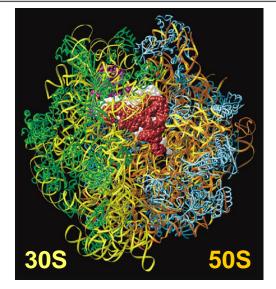
	Total number genome ORFs ^a	Number of proteins with >1 trans-membrane segment ^b	Number cloned ^b	Number of purified proteins ^b	Number of protein crystals ^b	Diffraction quality crystals ^b	Number of solved structures in PDB ^b
Escherichia coli	4289	776	792	516	204	88	86
Pseudomonas aeruginosa	5565	875	379	140	34	34	36
Haemophilus influenzae	1709	259	281	89	35	12	7
Staphylococcus aureus	2360	510	169	69	38	16	14
Streptococcus pneumoniae	2043	357	289	53	32	10	8
Entercoccus faecalis	3113	ND	310	88	27	15	11
Mycobacterium tuberculosis	3924	506	1853	452	216	136	70
Helicobacter pylori	1491	217	137	37	14	3	3
Total	24494	3500	4210	1444	600	314	235

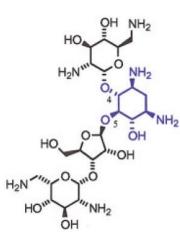
(Schmid, Biochem. Pharmacol. 2006, 71, 1048)

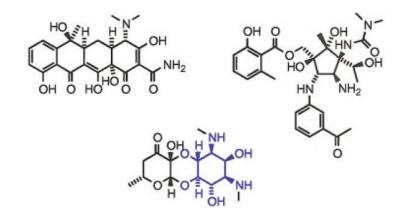
Table 3 – Structures of essential proteins of <i>E. coli</i> ^a					
Gene class	Total proteins in each class ^b	Number of proteins or homologs in PDB (% of proteins in each class with a structure) ^c			
Essential	250	179 (71.6)			
Non-essential	3253	1614 (49.6)			
Unknown	906	330 (36.4)			
Total	4413	2123 (48.1)			

^a This information was generated by linking information from the PEC database (http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp) with information from PEDANT (http://pedant.gsf.de/), using the "GI number" as the link between information in PEC and information in PEDANT. While not perfect, this method captured 2123 of the 2150 proteins of *E. coli* having a PDB code in the PEDANT database.

^b PEC database (http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp).

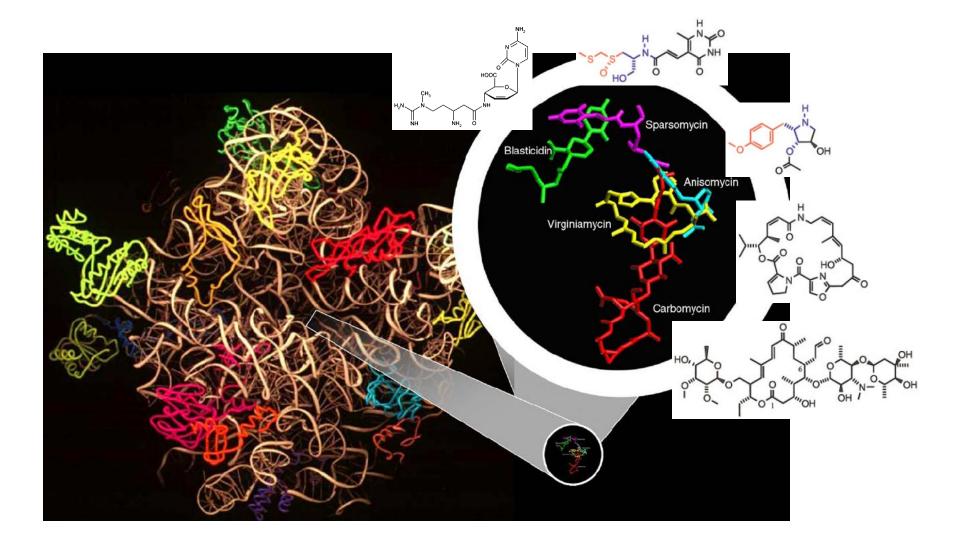

^c PEDANT database (http://pedant.gsf.de/).


Table 4 – Novel target-di	rected antibacterial agents			
Pathway	Target	PDB	References to protein structure and SGDD efforts on the target	Programs on the target without SGDD
Cell surface, membrane, peptidoglycan, cell wall	LpxC	1XXE	[31,32]	
	MurA	1UAE	[41,44]	
	MurB	1MBB	[14]	[52]
	YjeE	1FL9	[53,54]	
	FtsZ	1RQ7		[55]
	Signal peptidase	1T7D		[56]
Fatty acid biosynthesis	Acc (acetyl-coA carboxylase)		[57]	[58,59]
	FabF	1OX0	[60,61]	
	FabH	1MZS	[33,37,62]	
	FabI	1LXC		[63]
	YacE (coaE)	1N3B	[57]	
Nucleic acid management	TopoIV (ParC, ParE)	1S16, 1ZVU	[64]	
	Gyrase	1AB4, 1EI1		[65–69]
	RNA polymerase	1IW7	[70]	[71]
	MvaS HMG coA sythase	1TVZ	[29,72]	
Regulation	YycF	1NXO	[73]	
Translation	PheRS	1EIY		[74,75]
	Met tRNA synthetase	1PG2		[76]
	Peptidyl deformylase	2AIA	[77]	[78,79]


Several recent reports of new inhibitors of bacterial essential proteins have relied on high resolution protein structures to guide the drug discovery efforts. Several other projects have not been structure guided efforts, sometimes because the structure came out after the work identifying the inhibitors. The PDB code for the protein is listed in the third column; all protein structures are from clinically relevant species, except those that are italicized.

Antibacterial Discovery: Structural Genomics of the Bacterial Ribosome

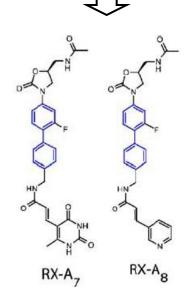
Table 1a – Available structures of antibiotics targeting the small ribosomal subunit (30S)					
Proposed mechanism of action	Antibiotic class	Antibiotic	Refs.	PDB ID	System used for structural determination
Bind to A- or P-sites and affect decoding.	Aminoglycosides	Apramycin Geneticin Hygromycin B Paromomycin Paromomycin Paromomycin Tobramycin Streptomycin	[66] [67] [26] [48] [25] [50] [26]	1YRJ 1MWL 1HNZ 1FJG 1IBK 1J7T 1LC4 1FJG	RNA fragment RNA fragment T. thermophilus T. thermophilus T. thermophilus RNA fragment RNA fragment T. thermophilus
Block binding of A-site tRNA	Tetracyclines	Tetracycline Tetracycline	[68] [69]	1HNW 1I97	T. thermophilus T. thermophilus
Inhibit translocation	Various	Edeine Pactamycin Spectinomycin	[69] [68] [26]	1I95 1HNX 1FJG	T. thermophilus T. thermophilus T. thermophilus

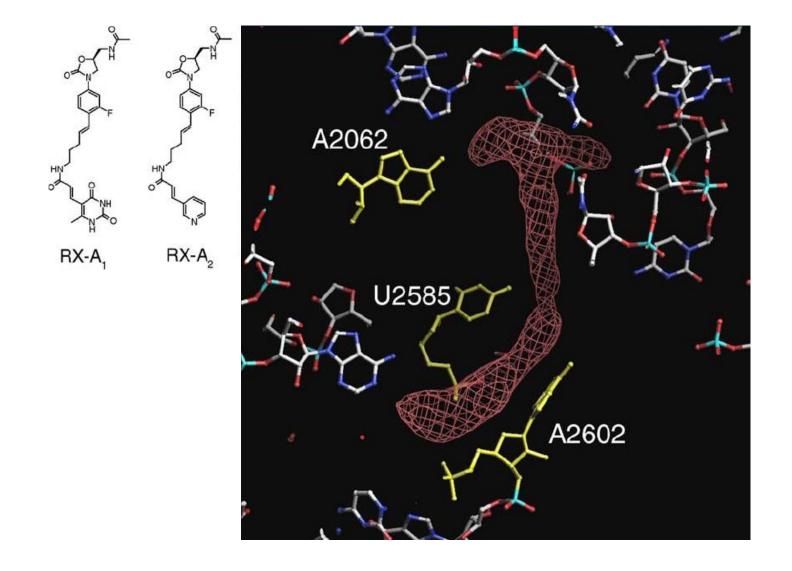


Antibacterial Discovery: Structural Genomics of the Bacterial Ribosome

Proposed mechanism of action	Antibiotic class	Antibiotic	Refs.	PDB ID	System used for structural determination
0	Macrolides	Azithromycin	[70]	1M1K	H. marismortui
- mm		Azithromycin	[71]	1NWY	D. radiodurans
HO LOH		Azithromycin	[19]	1YHQ	H. marismortui (G2058A)
UNIT OH JUNI OF J		Erythromycin	[72]	1JZY	D. radiodurans
1111 0 1111 OIIII N		Carbomycin	[70]	1K8A	H. marismortui
OH OH		Erythromycin	[19,79]	1YI2	H. marismortui (G2058A)
		Clarithromycin	[72]	1J5A	D. radiodurans
i lá		Roxithromycin	[72]	1JZZ	D. radiodurans
min Y Have		Spiramycin	[70]	1KD1	H. marismortui
HO		Troleandomycin	[73]	10ND	D. radiodurans
		Tylosin	[70]	1K9M	H. marismortui
	Ketolides	ABT-773	[71]	1NWX	D. radiodurans
Block peptide bond formation		Telithromycin	[74,79]	1P9X	D. radiodurans
by interfering with A-site or		Telithromycin	[19]	1YIJ	H. marismortui (G2058A)
P-site tRNA and/or prevent	Streptogramins	Dalfopristin	[75]	1SM1	D. radiodurans
the elongation of the		Quinupristin	[75]	1SM1	D. radiodurans
nascent peptide		Quinupristin	[19]	1YJW	H. marismortui (G2058A)
		Virginiamycin S	[19]	1YIT	H. marismortui (G2058A)
		Virginiamycin M	[76]	1N8R	H. marismortui
		Virginiamycin M	[19]	1YIT	H. marismortui (G2058A)
	Lincosamides	Clindamycin	[72,79]	1JZX	D. radiodurans
O-PO O HOM		Clindamycin	[19]	1YJN	H. marismortui (G2058A)
AN N L	Pleuromutilins	Tiamulin	[77]	1XBP	D. radiodurans
	Phenyl propanoids	Chloramphenicol	[72]	1K01	D. radiodurans
0		Chloramphenicol	[76]	1NJ1	H. marismortui
	Oxazolidinones	Linezolid	[61]	Not available	H. marismortui
	Various	Puromycin	[78]	1FFZ	H. marismortui
		Sparsomycin	[76]	1M90	H. marismortui
5 N		Anisomycin	[76]	1K73	H. marismortui
Ö		Blasticidin S	[76]	1KC8	H. marismortui

(Franceschi & Duffy, Biochem. Pharmacol. 2006, 71, 1016)


Fig. 3 – (Top) Relative binding orientations of sparsomycin (magenta) and linezolid (blue) in the 50S ribosomal subunit, with the rRNA stripped away for clarity. (Bottom) Original design hypothesis.

µ	
F	J F
	HN
THE O	
RX-A	RX-A ₂

Strain MIC (in μg/ml)	RX-A ₁	RX-A ₂
S. aureus QC	32	64
S. pneumoniae 1175 (mefa)	1	8
S. pyogenes Msr610 (ermB)	1	4
E.faecalis P5 (LNZ-R G2576U)	32	128
H. influenzae parent strain RD1	>128	>128
H. influenzae 895 (acrB KO)	32	1
Translation IC_{50} (μ M) in prokaryotes	0.92	14.6
Translation IC ₅₀ (µM) in eukaryotes	0.23	>200

Strain MIC (in μg/ml)	RX-A7	RX-A ₈
S. aureus QC	0.25	4
S. pneumoniae 1175 (mefa)	0.25	0.5
S. pyogenes Msr610 (ermB)	0.25	0.5
E.faecalis P5 (LNZ-R G2576U)	16	16
H. influenzae parent strain RD1	>128	>128
H. influenzae 895 (acrBKO)	0.25	2
Translation IC ₅₀ (µM) in prokaryotes	<0.02	6.8
Translation IC ₅₀ (µM) in eukaryotes	1.5	>100

